123 research outputs found
Synthesis of large CZTSe nanoparticles through a two-step hot-injection method
Grain boundaries in Cu2ZnSn(SxSe1x)4 (CZTSSe) thin films act as a defect that reduces the mobility of the charges. Hence one way to improve the performance of these thin film solar cells is to increase the grain size in the films. Most of the synthesis methods published so far for CZTSSe colloidal nanoparticles can achieve a general size distribution range from 5–20 nm. This is where the particle size will saturate for most recipes used today. The assumption is that uniform size distribution is good for grain growth in a thin film but based on packing considerations, an optimal mixture of large and small nanoparticles that can easily be dispersed in non-polar solvents could be better. Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) nanoparticles are synthesized using the hot-injection method with oleylamine, trioctylphosphine, and hexadecane as the solvents. Selenium (Se) is introduced in the liquid phase to encourage grain growth – liquid selenization. This eliminates the need to anneal the film in a Secontaining atmosphere and allows for a more environmentally friendly process with lower temperatures and shorter annealing times. We show that a good dispersion can be achieved by choosing suitable surfactant molecules, solvents and precursors, and by controlling the initial monomer concentration. Additionally, we show how our new synthesis route can be utilized to achieve targeted ratios of CZTS and CZTSe nanoparticles to be used for mixed-phase CZTSSe thin films
Answers and Solutions
Answers and solutions to the puzzles in this issue
Picosecond dynamics of internal exciton transitions in CdSe nanorods
The picosecond dynamics of excitons in colloidal CdSe nanorods are directly
measured via their 1s to 2p-like internal transitions by ultra-broadband
terahertz spectroscopy. Broadened absorption peaks from both the longitudinal
and transverse states are observed at 8.5 and 11 THz, respectively. The onset
of exciton-LO phonon coupling appears as a bleach in the optical conductivity
spectra at the LO phonon energy for times > 1 ps after excitation. Simulations
show a suppressed exciton temperature due to thermally excited hole states
being rapidly captured onto ligands or unpassivated surface states. The
relaxation kinetics are manipulated and the longitudinal transition is quenched
by surface ligand exchange with hole capturing pyridine
Influences of graphene oxide support on the electrochemical performances of graphene oxide-MnO2 nanocomposites
MnO2 supported on graphene oxide (GO) made from different graphite materials has been synthesized and further investigated as electrode materials for supercapacitors. The structure and morphology of MnO2-GO nanocomposites are characterized by X-ray diffraction, X-ray photoemission spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and Nitrogen adsorption-desorption. As demonstrated, the GO fabricated from commercial expanded graphite (denoted as GO(1)) possesses more functional groups and larger interplane gap compared to the GO from commercial graphite powder (denoted as GO(2)). The surface area and functionalities of GO have significant effects on the morphology and electrochemical activity of MnO2, which lead to the fact that the loading amount of MnO2 on GO(1) is much higher than that on GO(2). Elemental analysis performed via inductively coupled plasma optical emission spectroscopy confirmed higher amounts of MnO2 loading on GO(1). As the electrode of supercapacitor, MnO2-GO(1) nanocomposites show larger capacitance (307.7 F g-1) and better electrochemical activity than MnO2-GO(2) possibly due to the high loading, good uniformity, and homogeneous distribution of MnO2 on GO(1) support
Ultrafast Spin-To-Charge Conversion at the Surface of Topological Insulator Thin Films
Strong spin-orbit coupling, resulting in the formation of
spin-momentum-locked surface states, endows topological insulators with
superior spin-to-charge conversion characteristics, though the dynamics that
govern it have remained elusive. Here, we present an all-optical method that
enables unprecedented tracking of the ultrafast dynamics of spin-to-charge
conversion in a prototypical topological insulator BiSe/ferromagnetic
Co heterostructure, down to the sub-picosecond timescale. Compared to pure
BiSe or Co, we observe a giant terahertz emission in the
heterostructure than originates from spin-to-charge conversion, in which the
topological surface states play a crucial role. We identify a 0.12-picosecond
timescale that sets a technological speed limit of spin-to-charge conversion
processes in topological insulators. In addition, we show that the
spin-to-charge conversion efficiency is temperature independent in BiSe
as expected from the nature of the surface states, paving the way for designing
next-generation high-speed opto-spintronic devices based on topological
insulators at room temperature.Comment: 19 pages, 4 figure
- …