research

Ultrafast Spin-To-Charge Conversion at the Surface of Topological Insulator Thin Films

Abstract

Strong spin-orbit coupling, resulting in the formation of spin-momentum-locked surface states, endows topological insulators with superior spin-to-charge conversion characteristics, though the dynamics that govern it have remained elusive. Here, we present an all-optical method that enables unprecedented tracking of the ultrafast dynamics of spin-to-charge conversion in a prototypical topological insulator Bi2_2Se3_3/ferromagnetic Co heterostructure, down to the sub-picosecond timescale. Compared to pure Bi2_2Se3_3 or Co, we observe a giant terahertz emission in the heterostructure than originates from spin-to-charge conversion, in which the topological surface states play a crucial role. We identify a 0.12-picosecond timescale that sets a technological speed limit of spin-to-charge conversion processes in topological insulators. In addition, we show that the spin-to-charge conversion efficiency is temperature independent in Bi2_2Se3_3 as expected from the nature of the surface states, paving the way for designing next-generation high-speed opto-spintronic devices based on topological insulators at room temperature.Comment: 19 pages, 4 figure

    Similar works