18,889 research outputs found
Real time demonstration of high bitrate quantum random number generation with coherent laser light
We present a random number generation scheme that uses broadband measurements
of the vacuum field contained in the radio-frequency sidebands of a single-mode
laser. Even though the measurements may contain technical noise, we show that
suitable algorithms can transform the digitized photocurrents into a string of
random numbers that can be made arbitrarily correlated with a subset of the
quantum fluctuations (high quantum correlation regime) or arbitrarily immune to
environmental fluctuations (high environmental immunity). We demonstrate up to
2 Gbps of real time random number generation that were verified using standard
randomness tests
Magnetic Trapping of Cold Bromine Atoms
Magnetic trapping of bromine atoms at temperatures in the milliKelvin regime
is demonstrated for the first time. The atoms are produced by photodissociation
of Br molecules in a molecular beam. The lab-frame velocity of Br atoms is
controlled by the wavelength and polarization of the photodissociation laser.
Careful selection of the wavelength results in one of the pair of atoms having
sufficient velocity to exactly cancel that of the parent molecule, and it
remains stationary in the lab frame. A trap is formed at the null point between
two opposing neodymium permanent magnets. Dissociation of molecules at the
field minimum results in the slowest fraction of photofragments remaining
trapped. After the ballistic escape of the fastest atoms, the trapped slow
atoms are only lost by elastic collisions with the chamber background gas. The
measured loss rate is consistent with estimates of the total cross section for
only those collisions transferring sufficient kinetic energy to overcome the
trapping potential
Secondary pattern computation of an arbitrarily shaped main reflector
The secondary pattern of a perfectly conducting offset main reflector being illuminated by a point feed at an arbitrary location was studied. The method of analysis is based upon the application of the Fast Fourier Transform (FFT) to the aperture fields obtained using geometrical optics (GO) and geometrical theory of diffraction (GTD). Key features of the reflector surface is completely arbitrary, the incident field from the feed is most general with arbitrary polarization and location, and the edge diffraction is calculated by either UAT or by UTD. Comparison of this technique for an offset parabolic reflector with the Jacobi-Bessel and Fourier-Bessel techniques shows good agreement. Near field, far field, and scan data of a large reflector are presented
Biased EPR entanglement and its application to teleportation
We consider pure continuous variable entanglement with non-equal correlations
between orthogonal quadratures. We introduce a simple protocol which equates
these correlations and in the process transforms the entanglement onto a state
with the minimum allowed number of photons. As an example we show that our
protocol transforms, through unitary local operations, a single squeezed beam
split on a beam splitter into the same entanglement that is produced when two
squeezed beams are mixed orthogonally. We demonstrate that this technique can
in principle facilitate perfect teleportation utilising only one squeezed beam.Comment: 8 pages, 5 figure
An experimental investigation of criteria for continuous variable entanglement
We generate a pair of entangled beams from the interference of two amplitude
squeezed beams. The entanglement is quantified in terms of EPR-paradox [Reid88]
and inseparability [Duan00] criteria, with observed results of and , respectively. Both results clearly beat the standard quantum
limit of unity. We experimentally analyze the effect of decoherence on each
criterion and demonstrate qualitative differences. We also characterize the
number of required and excess photons present in the entangled beams and
provide contour plots of the efficacy of quantum information protocols in terms
of these variables.Comment: 4 pages, 5 figure
Analytic treatment of CRIB Quantum Memories for Light using Two-level Atoms
It has recently been discovered that the optical analogue of a gradient echo
in an optically thick material could form the basis of a optical memory that is
both completely efficient and noise free. Here we present analytical
calculation showing this is the case. There is close analogy between the
operation of the memory and an optical system with two beam splitters. We can
use this analogy to calculate efficiencies as a function of optical depth for a
number of quantum memory schemes based on controlled inhomogeneous broadening.
In particular we show that multiple switching leads to a net 100% retrieval
efficiency for the optical gradient echo even in the optically thin case.Comment: 10 page
Configurable unitary transformations and linear logic gates using quantum memories
We show that a set of optical memories can act as a configurable linear
optical network operating on frequency-multiplexed optical states. Our protocol
is applicable to any quantum memories that employ off-resonant Raman
transitions to store optical information in atomic spins. In addition to the
configurability, the protocol also offers favourable scaling with an increasing
number of modes where N memories can be configured to implement an arbitrary
N-mode unitary operations during storage and readout. We demonstrate the
versatility of this protocol by showing an example where cascaded memories are
used to implement a conditional CZ gate.Comment: 5 pages, 2 figure
Macular Bioaccelerometers on Earth and in Space
Space flight offers the opportunity to study linear bioaccelerometers (vestibular maculas) in the virtual absence of a primary stimulus, gravitational acceleration. Macular research in space is particularly important to NASA because the bioaccelerometers are proving to be weighted neural networks in which information is distributed for parallel processing. Neural networks are plastic and highly adaptive to new environments. Combined morphological-physiological studies of maculas fixed in space and following flight should reveal macular adaptive responses to microgravity, and their time-course. Ground-based research, already begun, using computer-assisted, 3-dimensional reconstruction of macular terminal fields will lead to development of computer models of functioning maculas. This research should continue in conjunction with physiological studies, including work with multichannel electrodes. The results of such a combined effort could usher in a new era in understanding vestibular function on Earth and in space. They can also provide a rational basis for counter-measures to space motion sickness, which may prove troublesome as space voyager encounter new gravitational fields on planets, or must re-adapt to 1 g upon return to earth
- …