5 research outputs found

    Transarterial RAdioembolization versus ChemoEmbolization for the treatment of hepatocellular carcinoma (TRACE) : study protocol for a randomized controlled trial

    Get PDF
    Background: Hepatocellular carcinoma is a primary malignant tumor of the liver that accounts for an important health problem worldwide. Only 10 to 15% of hepatocellular carcinoma patients are suitable candidates for treatment with curative intent, such as hepatic resection and liver transplantation. A majority of patients have locally advanced, liver restricted disease (Barcelona Clinic Liver Cancer (BCLC) staging system intermediate stage). Transarterial loco regional treatment modalities offer palliative treatment options for these patients; transarterial chemoembolization (TACE) is the current standard treatment. During TACE, a catheter is advanced into the branches of the hepatic artery supplying the tumor, and a combination of embolic material and chemotherapeutics is delivered through the catheter directly into the tumor. Yttrium-90 radioembolization (Y-90-RE) involves the transarterial administration of minimally embolic microspheres loaded with Yttrium-90, a beta-emitting isotope, delivering selective internal radiation to the tumor. Y-90-RE is increasingly used in clinical practice for treatment of intermediate stage hepatocellular carcinoma, but its efficacy has never been prospectively compared to that of the standard treatment (TACE). In this study, we describe the protocol of a multicenter randomized controlled trial aimed at comparing the effectiveness of TACE and Y-90-RE for treatment of patients with unresectable (BCLC intermediate stage) hepatocellular carcinoma. Methods/design: In this pragmatic randomized controlled trial, 140 patients with unresectable (BCLC intermediate stage) hepatocellular carcinoma, with Eastern Cooperative Oncology Group performance status 0 to 1 and Child-Pugh A to B will be randomly assigned to either Y-90-RE or TACE with drug eluting beads. Patients assigned to Y-90-RE will first receive a diagnostic angiography, followed by the actual transarterial treatment, which can be divided into two sessions in case of bilobar disease. Patients assigned to TACE will receive a maximum of three consecutive transarterial treatment sessions. Patients will undergo structural follow-up for a timeframe of two years post treatment. Post procedural magnetic resonance imaging (MRI) will be performed at one and three months post trial entry and at three-monthly intervals thereafter for two years to assess tumor response. Primary outcome will be time to progression. Secondary outcomes will be overall survival, tumor response according to the modified RECIST criteria, toxicities/adverse events, treatment related effect on total liver function, quality of life, treatment-related costs and cost-effectiveness

    Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intra-arterial radioembolization with yttrium-90 microspheres ( <sup>90</sup>Y-RE) is an increasingly used therapy for patients with unresectable liver malignancies. Over the last decade, radioactive holmium-166 poly(L-lactic acid) microspheres ( <sup>166</sup>Ho-PLLA-MS) have been developed as a possible alternative to <sup>90</sup>Y-RE. Next to high-energy beta-radiation, <sup>166</sup>Ho also emits gamma-radiation, which allows for imaging by gamma scintigraphy. In addition, Ho is a highly paramagnetic element and can therefore be visualized by MRI. These imaging modalities are useful for assessment of the biodistribution, and allow dosimetry through quantitative analysis of the scintigraphic and MR images. Previous studies have demonstrated the safety of <sup>166</sup>Ho-PLLA-MS radioembolization ( <sup>166</sup>Ho-RE) in animals. The aim of this phase I trial is to assess the safety and toxicity profile of <sup>166</sup>Ho-RE in patients with liver metastases.</p> <p>Methods</p> <p>The HEPAR study (Holmium Embolization Particles for Arterial Radiotherapy) is a non-randomized, open label, safety study. We aim to include 15 to 24 patients with liver metastases of any origin, who have chemotherapy-refractory disease and who are not amenable to surgical resection. Prior to treatment, in addition to the standard technetium-99m labelled macroaggregated albumin ( <sup>99m</sup>Tc-MAA) dose, a low radioactive safety dose of 60-mg <sup>166</sup>Ho-PLLA-MS will be administered. Patients are treated in 4 cohorts of 3-6 patients, according to a standard dose escalation protocol (20 Gy, 40 Gy, 60 Gy, and 80 Gy, respectively). The primary objective will be to establish the maximum tolerated radiation dose of <sup>166</sup>Ho-PLLA-MS. Secondary objectives are to assess tumour response, biodistribution, performance status, quality of life, and to compare the <sup>166</sup>Ho-PLLA-MS safety dose and the <sup>99m</sup>Tc-MAA dose distributions with respect to the ability to accurately predict microsphere distribution.</p> <p>Discussion</p> <p>This will be the first clinical study on <sup>166</sup>Ho-RE. Based on preclinical studies, it is expected that <sup>166</sup>Ho-RE has a safety and toxicity profile comparable to that of <sup>90</sup>Y-RE. The biochemical and radionuclide characteristics of <sup>166</sup>Ho-PLLA-MS that enable accurate dosimetry calculations and biodistribution assessment may however improve the overall safety of the procedure.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT01031784</p
    corecore