14,858 research outputs found
Using Ontology Fingerprints to evaluate genome-wide association study results
We describe an approach to characterize genes or phenotypes via ontology fingerprints which are composed of Gene Ontology (GO) terms overrepresented among those PubMed abstracts linked to the genes or phenotypes. We then quantify the biological relevance between genes and phenotypes by comparing their ontology fingerprints to calculate a similarity score. We validated this approach by correctly identifying genes belong to their biological pathways with high accuracy, and applied this approach to evaluate GWA study by ranking genes associated with the lipid concentrations in plasma as well as to prioritize genes within linkage disequilibrium (LD) block. We found that the genes with highest scores were: ABCA1, LPL, and CETP for HDL; LDLR, APOE and APOB for LDL; and LPL, APOA1 and APOB for triglyceride. In addition, we identified some top ranked genes linking to lipid metabolism from the literature even in cases where such knowledge was not reflected in current annotation of these genes. These results demonstrate that ontology fingerprints can be used effectively to prioritize genes from GWA studies for experimental validation
Correlation between ocular elasticity and intraocular pressure on optic nerve damages
Optic neuropathy in glaucoma
causes visual field loss and blindness [1]. The optic
nerve damage in the lamina cribrosa (LC) of the
sclera, the primary site of glaucoma, is correlated
with the intraocular pressure (IOP) [2]. Literature
shows that the optic nerves are sheared at high
IOP and the scleral biomechanical properties
play an important role in the development and
progression of glaucomatous damage to the LC
and ganglion cell axons with the optic nerve head
(ONH). The aim of this study is to determine and
characterize the correlation between the corneal,
scleral and ONH elasticity, and intraocular
pressure on the optic nerve damages
Correlation between ocular elasticity and intraocular pressure on optic nerve damages
Optic neuropathy in glaucoma
causes visual field loss and blindness [1]. The optic
nerve damage in the lamina cribrosa (LC) of the
sclera, the primary site of glaucoma, is correlated
with the intraocular pressure (IOP) [2]. Literature
shows that the optic nerves are sheared at high
IOP and the scleral biomechanical properties
play an important role in the development and
progression of glaucomatous damage to the LC
and ganglion cell axons with the optic nerve head
(ONH). The aim of this study is to determine and
characterize the correlation between the corneal,
scleral and ONH elasticity, and intraocular
pressure on the optic nerve damages
Recommended from our members
Polyamide 11-Carbon Nanotubes Nanocomposites: Preliminary Investigation
The objective of this research is to develop an improved polyamide 11 (PA11) polymer with
enhanced flame retardancy, thermal, and mechanical properties for selective laser sintering
(SLS) rapid manufacturing. In the present study, a nanophase was introduced into polyamide 11
via twin screw extrusion. Arkema Rilsan® polyamide 11 molding polymer pellets were used
with 1, 3, 5, and 7 wt% loadings of Arkema’s GraphistrengthTM multi-wall carbon nanotubes
(MWNTs) to create a family of PA11-MWNT nanocomposites.
Transmission electron microscopy and scanning electron microscopy were used to determine
the degree and uniformity of dispersion. Injection molded test specimens were fabricated for
physical, thermal, mechanical properties, and flammability measurements. Thermal stability of
these polyamide 11-MWNT nanocomposites was examined by TGA. Mechanical properties such
as ultimate tensile strength, rupture tensile strength, and elongation at rupture were measured.
Flammability properties were also obtained using the UL 94 test method. All these different
methods and subsequent polymer characteristics are discussed in this paper.Mechanical Engineerin
Implementing Unitarity in Perturbation Theory
Unitarity cannot be perserved order by order in ordinary perturbation theory
because the constraint UU^\dagger=\1 is nonlinear. However, the corresponding
constraint for , being , is linear so it can be
maintained in every order in a perturbative expansion of . The perturbative
expansion of may be considered as a non-abelian generalization of the
linked-cluster expansion in probability theory and in statistical mechanics,
and possesses similar advantages resulting from separating the short-range
correlations from long-range effects. This point is illustrated in two QCD
examples, in which delicate cancellations encountered in summing Feynman
diagrams of are avoided when they are calculated via the perturbative expansion
of . Applications to other problems are briefly discussed.Comment: to appear in Phys. Rev.
Self-aligned nanoscale SQUID on a tip
A nanometer-sized superconducting quantum interference device (nanoSQUID) is
fabricated on the apex of a sharp quartz tip and integrated into a scanning
SQUID microscope. A simple self-aligned fabrication method results in
nanoSQUIDs with diameters down to 100 nm with no lithographic processing. An
aluminum nanoSQUID with an effective area of 0.034 m displays flux
sensitivity of 1.8 \mu_B/\mathrm{Hz}^{1/2}$ and high bandwidth, the SQUID on a tip is a highly
promising probe for nanoscale magnetic imaging and spectroscopy.Comment: 14 manuscript pages, 5 figure
- …