126 research outputs found

    Quantification of Maceration Changes using Post Mortem MRI in Fetuses

    Get PDF
    BACKGROUND: Post mortem imaging is playing an increasingly important role in perinatal autopsy, and correct interpretation of imaging changes is paramount. This is particularly important following intra-uterine fetal death, where there may be fetal maceration. The aim of this study was to investigate whether any changes seen on a whole body fetal post mortem magnetic resonance imaging (PMMR) correspond to maceration at conventional autopsy. METHODS: We performed pre-autopsy PMMR in 75 fetuses using a 1.5 Tesla Siemens Avanto MR scanner (Erlangen, Germany). PMMR images were reported blinded to the clinical history and autopsy data using a numerical severity scale (0 = no maceration changes to 2 = severe maceration changes) for 6 different visceral organs (total 12). The degree of maceration at autopsy was categorized according to severity on a numerical scale (1 = no maceration to 4 = severe maceration). We also generated quantitative maps to measure the liver and lung T2. RESULTS: The mean PMMR maceration score correlated well with the autopsy maceration score (R(2) = 0.93). A PMMR score of ≥4.5 had a sensitivity of 91%, specificity of 64%, for detecting moderate or severe maceration at autopsy. Liver and lung T2 were increased in fetuses with maceration scores of 3-4 in comparison to those with 1-2 (liver p = 0.03, lung p = 0.02). CONCLUSIONS: There was a good correlation between PMMR maceration score and the extent of maceration seen at conventional autopsy. This score may be useful in interpretation of fetal PMMR

    Residual brain injury after early discontinuation of cooling therapy in mild neonatal encephalopathy

    Get PDF
    We examined the brain injury and neurodevelopmental outcomes in a prospective cohort of 10 babies with mild encephalopathy who had early cessation of cooling therapy. All babies had MRI and spectroscopy within 2 weeks after birth and neurodevelopmental assessment at 2 years. Cooling was prematurely discontinued at a median age of 9 hours (IQR 5-13) due to rapid clinical improvement. Five (50%) had injury on MRI or spectroscopy, and two (20%) had an abnormal neurodevelopmental outcome at 2 years. Premature cessation of cooling therapy in babies with mild neonatal encephalopathy does not exclude residual brain injury and adverse long-term neurodevelopmental outcomes. This study refers to babies recruited into the MARBLE study (NCT01309711, pre-results stage)

    Therapeutic hypothermia in mild neonatal encephalopathy: a national survey of practice in the UK

    Get PDF
    Although major cooling trials (and subsequent guidelines) excluded babies with mild encephalopathy, anecdotal evidence suggests that cooling is often offered to these infants. We report a national survey on current cooling practices for babies with mild encephalopathy in the UK. From 74 neonatal units contacted, 68 were cooling centres. We received 54 responses (79%) and included 48 (five excluded due to incomplete data and one found later not to offer cooling). Of these, 36 centres (75%) offered cooling to infants with mild encephalopathy. Although most of the participating units reported targeting 33-34°C core temperature, seven (19%) considered initiating cooling beyond 6 hours of age and 13 (36%) discontinued cooling prior to 72 hours. Babies were ventilated for cooling in two (6%) units and 13 (36%) sedated all cooled babies. Enteral feeding was withheld in 15 (42%) units and reduced below 25% of requirements in eight (22%) units. MRI and neurodevelopmental outcome evaluation were offered to all cooled babies in 29 (80%) and 27 (75%) units, respectively. Further research is necessary to ensure optimal neuroprotection in mild encephalopathy

    Odontoid metastasis: a potential lethal complication

    Get PDF
    Nearly one third of cervical spine metastasis has a primary breast malignancy. Patients with cervical metastasis have higher mortality due to advanced stage of the malignancy. Treatment is palliative to relieve pain, prevent pathological fracture, improve mobility and function, and prolong survival. We describe a 40-year-old woman with a history of breast cancer who presented with neck and shoulder pain of 1 week duration with no neurological deficit. Following clinical examination, radiographs taken of the cervical spine was normal. Radiographs repeated 3 weeks later revealed a large lytic lesion of the odontoid occupying 70–80% of the peg. Further investigation including magnetic resonance imaging and bone scan showed no further spinal lesions. She underwent cyclical radiotherapy with complete resolution of the odontoid peg lesion and clinically was asymptomatic at 2 years. Metastatic lesions of the odontoid are atypical, and this case reinforces the necessity of early detection to evade disastrous consequences

    Hypothermia for encephalopathy in low-income and middle-income countries: feasibility of whole-body cooling using a low-cost servo-controlled device

    No full text
    Although therapeutic hypothermia (TH) is the standard of care for hypoxic ischaemic encephalopathy in high-income countries, the safety and efficacy of this therapy in low-income and middle-income countries (LMICs) is unknown. We aimed to describe the feasibility of TH using a low-cost servo-controlled cooling device and the short-term outcomes of the cooled babies in LMIC. Design: We recruited babies with moderate or severe hypoxic ischaemic encephalopathy (aged <6 hours) admitted to public sector tertiary neonatal units in India over a 28-month period. We administered whole-body cooling (set core temperature 33.5°C) using a servo-controlled device for 72 hours, followed by passive rewarming. We collected the data on short-term neonatal outcomes prior to hospital discharge. Results: Eighty-two babies were included-61 (74%) had moderate and 21 (26%) had severe encephalopathy. Mean (SD) hypothermia cooling induction time was 1.7 hour (1.5) and the effective cooling time 95% (0.08). The mean (SD) hypothermia induction time was 1.7 hour (1.5 hour), core temperature during cooling was 33.4°C (0.2), rewarming rate was 0.34°C (0.16°C) per hour and the effective cooling time was 95% (8%). Twenty-five (51%) babies had gastric bleeds, 6 (12%) had pulmonary bleeds and 21 (27%) had meconium on delivery. Fifteen (18%) babies died before discharge from hospital. Heart rate more than 120 bpm during cooling (P=0.01) and gastric bleeds (P<0.001) were associated with neonatal mortality. Conclusions: The low-cost servo-controlled cooling device maintained the core temperature well within the target range. Adequately powered clinical trials are required to establish the safety and efficacy of TH in LMICs. Clinical trial registration number: NCT01760629

    Whole-Body Hypothermia, Cerebral Magnetic Resonance Biomarkers, and Outcomes in Neonates With Moderate or Severe Hypoxic-Ischemic Encephalopathy Born at Tertiary Care Centers vs Other Facilities: A Nested Study Within a Randomized Clinical Trial

    Get PDF
    IMPORTANCE: The association between place of birth and hypothermic neuroprotection after hypoxic-ischemic encephalopathy (HIE) in low- and middle-income countries (LMICs) is unknown. OBJECTIVE: To ascertain the association between place of birth and the efficacy of whole-body hypothermia for protection against brain injury measured by magnetic resonance (MR) biomarkers among neonates born at a tertiary care center (inborn) or other facilities (outborn). Design, Setting, and PARTICIPANTS: This nested cohort study within a randomized clinical trial involved neonates at 7 tertiary neonatal intensive care units in India, Sri Lanka, and Bangladesh between August 15, 2015, and February 15, 2019. A total of 408 neonates born at or after 36 weeks' gestation with moderate or severe HIE were randomized to receive whole-body hypothermia (reduction of rectal temperatures to between 33.0 °C and 34.0 °C; hypothermia group) for 72 hours or no whole-body hypothermia (rectal temperatures maintained between 36.0 °C and 37.0 °C; control group) within 6 hours of birth, with follow-up until September 27, 2020. Exposure: 3T MR imaging, MR spectroscopy, and diffusion tensor imaging. MAIN OUTCOMES AND MEASURES: Thalamic N-acetyl aspartate (NAA) mmol/kg wet weight, thalamic lactate to NAA peak area ratios, brain injury scores, and white matter fractional anisotropy at 1 to 2 weeks and death or moderate or severe disability at 18 to 22 months. RESULTS: Among 408 neonates, the mean (SD) gestational age was 38.7 (1.3) weeks; 267 (65.4%) were male. A total of 123 neonates were inborn and 285 were outborn. Inborn neonates were smaller (mean [SD], 2.8 [0.5] kg vs 2.9 [0.4] kg; P = .02), more likely to have instrumental or cesarean deliveries (43.1% vs 24.7%; P = .01), and more likely to be intubated at birth (78.9% vs 29.1%; P = .001) than outborn neonates, although the rate of severe HIE was not different (23.6% vs 17.9%; P = .22). Magnetic resonance data from 267 neonates (80 inborn and 187 outborn) were analyzed. In the hypothermia vs control groups, the mean (SD) thalamic NAA levels were 8.04 (1.98) vs 8.31 (1.13) among inborn neonates (odds ratio [OR], -0.28; 95% CI, -1.62 to 1.07; P = .68) and 8.03 (1.89) vs 7.99 (1.72) among outborn neonates (OR, 0.05; 95% CI, -0.62 to 0.71; P = .89); the median (IQR) thalamic lactate to NAA peak area ratios were 0.13 (0.10-0.20) vs 0.12 (0.09-0.18) among inborn neonates (OR, 1.02; 95% CI, 0.96-1.08; P = .59) and 0.14 (0.11-0.20) vs 0.14 (0.10-0.17) among outborn neonates (OR, 1.03; 95% CI, 0.98-1.09; P = .18). There was no difference in brain injury scores or white matter fractional anisotropy between the hypothermia and control groups among inborn or outborn neonates. Whole-body hypothermia was not associated with reductions in death or disability, either among 123 inborn neonates (hypothermia vs control group: 34 neonates [58.6%] vs 34 [56.7%]; risk ratio, 1.03; 95% CI, 0.76-1.41), or 285 outborn neonates (hypothermia vs control group: 64 neonates [46.7%] vs 60 [43.2%]; risk ratio, 1.08; 95% CI, 0.83-1.41). CONCLUSIONS AND RELEVANCE: In this nested cohort study, whole-body hypothermia was not associated with reductions in brain injury after HIE among neonates in South Asia, irrespective of place of birth. These findings do not support the use of whole-body hypothermia for HIE among neonates in LMICs. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02387385

    Identification of Novel Proteins in Neospora caninum Using an Organelle Purification and Monoclonal Antibody Approach

    Get PDF
    Neospora caninum is an important veterinary pathogen that causes abortion in cattle and neuromuscular disease in dogs. Neospora has also generated substantial interest because it is an extremely close relative of the human pathogen Toxoplasma gondii, yet does not appear to infect humans. While for Toxoplasma there are a wide array of molecular tools and reagents available for experimental investigation, relatively few reagents exist for Neospora. To investigate the unique biological features of this parasite and exploit the recent sequencing of its genome, we have used an organelle isolation and monoclonal antibody approach to identify novel organellar proteins and develop a wide array of probes for subcellular localization. We raised a panel of forty-six monoclonal antibodies that detect proteins from the rhoptries, micronemes, dense granules, inner membrane complex, apicoplast, mitochondrion and parasite surface. A subset of the proteins was identified by immunoprecipitation and mass spectrometry and reveal that we have identified and localized many of the key proteins involved in invasion and host interaction in Neospora. In addition, we identified novel secretory proteins not previously studied in any apicomplexan parasite. Thus, this organellar monoclonal antibody approach not only greatly enhances the tools available for Neospora cell biology, but also identifies novel components of the unique biological characteristics of this important veterinary pathogen

    Disrupted habenula function in major depression.

    Get PDF
    The habenula is a small, evolutionarily conserved brain structure that plays a central role in aversive processing and is hypothesised to be hyperactive in depression, contributing to the generation of symptoms such as anhedonia. However, habenula responses during aversive processing have yet to be reported in individuals with major depressive disorder (MDD). Unmedicated and currently depressed MDD patients (N=25, aged 18-52 years) and healthy volunteers (N=25, aged 19-52 years) completed a passive (Pavlovian) conditioning task with appetitive (monetary gain) and aversive (monetary loss and electric shock) outcomes during high-resolution functional magnetic resonance imaging; data were analysed using computational modelling. Arterial spin labelling was used to index resting-state perfusion and high-resolution anatomical images were used to assess habenula volume. In healthy volunteers, habenula activation increased as conditioned stimuli (CSs) became more strongly associated with electric shocks. This pattern was significantly different in MDD subjects, for whom habenula activation decreased significantly with increasing association between CSs and electric shocks. Individual differences in habenula volume were negatively associated with symptoms of anhedonia across both groups. MDD subjects exhibited abnormal negative task-related (phasic) habenula responses during primary aversive conditioning. The direction of this effect is opposite to that predicted by contemporary theoretical accounts of depression based on findings in animal models. We speculate that the negative habenula responses we observed may result in the loss of the capacity to actively avoid negative cues in MDD, which could lead to excessive negative focus
    • …
    corecore