15 research outputs found

    PeptideMine - A webserver for the design of peptides for protein-peptide binding studies derived from protein-protein interactomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signal transduction events often involve transient, yet specific, interactions between structurally conserved protein domains and polypeptide sequences in target proteins. The identification and validation of these associating domains is crucial to understand signal transduction pathways that modulate different cellular or developmental processes. Bioinformatics strategies to extract and integrate information from diverse sources have been shown to facilitate the experimental design to understand complex biological events. These methods, primarily based on information from high-throughput experiments, have also led to the identification of new connections thus providing hypothetical models for cellular events. Such models, in turn, provide a framework for directing experimental efforts for validating the predicted molecular rationale for complex cellular processes. In this context, it is envisaged that the rational design of peptides for protein-peptide binding studies could substantially facilitate the experimental strategies to evaluate a predicted interaction. This rational design procedure involves the integration of protein-protein interaction data, gene ontology, physico-chemical calculations, domain-domain interaction data and information on functional sites or critical residues.</p> <p>Results</p> <p>Here we describe an integrated approach called "PeptideMine" for the identification of peptides based on specific functional patterns present in the sequence of an interacting protein. This approach based on sequence searches in the interacting sequence space has been developed into a webserver, which can be used for the identification and analysis of peptides, peptide homologues or functional patterns from the interacting sequence space of a protein. To further facilitate experimental validation, the PeptideMine webserver also provides a list of physico-chemical parameters corresponding to the peptide to determine the feasibility of using the peptide for <it>in vitro </it>biochemical or biophysical studies.</p> <p>Conclusions</p> <p>The strategy described here involves the integration of data and tools to identify potential interacting partners for a protein and design criteria for peptides based on desired biochemical properties. Alongside the search for interacting protein sequences using three different search programs, the server also provides the biochemical characteristics of candidate peptides to prune peptide sequences based on features that are most suited for a given experiment. The PeptideMine server is available at the URL: <url>http://caps.ncbs.res.in/peptidemine</url></p

    Modulation of catalytic activity in multi-domain protein tyrosine phosphatases

    Get PDF
    Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain

    Supporting Data for "Allostery in Protein Tyrosine Phosphatases is Enabled by Divergent Dynamics"

    No full text
    Molecular dynamics topologies (.prmtop), initial coordinates (.inpcrd), and trajectories (.nc) associated with the preprint: https://doi.org/10.1101/2023.07.23.550226. Tarballs are included for each of the six systems, named by the PDB ID for the starting structure and state (ligand/apo). The four replicates of 155ns are included in each tarball in AMBER's netcdf format (.nc). All trajectories have been stripped of solvent and ions and are autoimaged. Input files and an example script for running simulations in AMBER20 are provided (infiles.tar.gz) as well as the topologies and coordinates for the solvated systems (solvated_topologies.tar.gz)

    Conformational Basis for Substrate Recruitment in Protein Tyrosine Phosphatase 10D

    No full text
    The coordinated activity of protein tyrosine phosphatases (PTPs) is crucial for the initiation, modulation, and termination of diverse cellular processes. The catalytic activity of this protein depends on a nucleophilic cysteine at the active site that mediates the hydrolysis of the incoming phosphotyrosine substrate. While the role of conserved residues in the catalytic mechanism of PTPs has been extensively examined, the diversity in the mechanisms of substrate recognition and modulation of catalytic activity suggests that other, less conserved sequence and structural features could contribute to this process. Here we describe the crystal structures of Drosophila melanogaster PTP10D in the apo form as well as in a complex with a substrate peptide and an inhibitor. These studies reveal the role of aromatic ring stacking interactions at the boundary of the active site of PTPs in mediating substrate recruitment. We note that phenylalanine 76, of the so-called KNRY loop, is crucial for orienting the phosphotyrosine residue toward the nucleophilic cysteine. Mutation of phenylalanine 76 to leucine results in a 60-fold decrease in the catalytic efficiency of the enzyme. Fluorescence measurements with a competitive inhibitor, p-nitrocatechol sulfate, suggest that Phe76 also influences the formation of the enzyme-substrate intermediate. The structural and biochemical data for PTP10D thus highlight the role of relatively less conserved residues in PTP domains in both substrate recruitment and modulation of reaction kinetics

    Addition of a polypeptide stretch at the N-terminus improves the expression, stability and solubility of recombinant protein tyrosine phosphatases from Drosophila melanogaster

    No full text
    The production of recombinant proteins in Escherichia coli involves substantial optimization in the size of the protein and over-expression strategies to avoid inclusion-body formation. Here we report our observations on this so-called construct dependence using the catalytic domains of five Drosophila melanogaster receptor protein tyrosine phosphatases as a model system. Five strains of E. coli as well as three variations in purification tags viz., poly-histidine peptide attachments at the N- and C-termini and a construct with Glutathione-S-transferase at the N-terminus were examined. In this study we observe that inclusion of a 45 residue stretch at the N-terminus was crucial for over-expression of the enzymes, influencing both the solubility and the stability of these recombinant proteins. While the addition of negatively charged residues in the N-terminal extension could partially rationalize the improvement in the solubility of these constructs, conventional parameters like the proportion of order promoting residues or aliphatic index did not correlate with the improved biochemical characteristics. These findings thus suggest the inclusion of additional parameters apart from rigid domain predictions to obtain domain constructs that are most likely to yield soluble protein upon expression in E. coli

    Addition of a polypeptide stretch at the N-terminus improves the expression, stability and solubility of recombinant protein tyrosine phosphatases from Drosophila melanogaster

    No full text
    The production of recombinant proteins in Escherichia coli involves substantial optimization in the size of the protein and over-expression strategies to avoid inclusion-body formation. Here we report our observations on this so-called construct dependence using the catalytic domains of five Drosophila melanogaster receptor protein tyrosine phosphatases as a model system. Five strains of E. coli as well as three variations in purification tags viz., poly-histidine peptide attachments at the N- and C-termini and a construct with Glutathione-S-transferase at the N-terminus were examined. In this study we observe that inclusion of a 45 residue stretch at the N-terminus was crucial for over-expression of the enzymes, influencing both the solubility and the stability of these recombinant proteins. While the addition of negatively charged residues in the N-terminal extension could partially rationalize the improvement in the solubility of these constructs, conventional parameters like the proportion of order promoting residues or aliphatic index did not correlate with the improved biochemical characteristics. These findings thus suggest the inclusion of additional parameters apart from rigid domain predictions to obtain domain constructs that are most likely to yield soluble protein upon expression in E. coli

    Inter-domain interactions influence the stability and catalytic activity of the bi-domain protein tyrosine phosphatase PTP99A

    No full text
    The two protein tyrosine phosphatase (PTP) domains in bi-domain PTPs share high sequence and structural similarity. However, only one of the two PIP domains is catalytically active. Here we describe biochemical studies on the two tandem PTP domains of the bi-domain PTP, PTP99A. Phosphatase activity, monitored using small molecule as well as peptide substrates, revealed that the inactive (D2) domain activates the catalytic (D1) domain. Thermodynamic measurements suggest that the inactive D2 domain stabilizes the bi-domain (D1-D2) protein. The mechanism by which the D2 domain activates and stabilizes the bi-domain protein is governed by few interactions at the inter-domain interface. In particular, mutating Lys990 at the interface attenuates inter-domain communication. This residue is located at a structurally equivalent location to the so-called allosteric site of the canonical single domain PIP, PTP1B. These observations suggest functional optimization in bi-domain PTPs whereby the inactive PTP domain modulates the catalytic activity of the bi-domain enzyme. (C) 2012 Elsevier B.V. All rights reserved

    Allostery in Protein Tyrosine Phosphatases is Enabled by Divergent Dynamics

    No full text
    Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study, we employ this paradigm to answer a basic question: in enzyme superfamilies, where the catalytic mechanism, active sites, and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as representatives of the conserved protein tyrosine phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of the catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH

    Conformational Basis for Substrate Recruitment in Protein Tyrosine Phosphatase 10D

    No full text
    The coordinated activity of protein tyrosine phosphatases (PTPs) is crucial for the initiation, modulation, and termination of diverse cellular processes. The catalytic activity of this protein depends on a nucleophilic cysteine at the active site that mediates the hydrolysis of the incoming phosphotyrosine substrate. While the role of conserved residues in the catalytic mechanism of PTPs has been extensively examined, the diversity in the mechanisms of substrate recognition and modulation of catalytic activity suggests that other, less conserved sequence and structural features could contribute to this process. Here we describe the crystal structures of <i>Drosophila melanogaster</i> PTP10D in the apo form as well as in a complex with a substrate peptide and an inhibitor. These studies reveal the role of aromatic ring stacking interactions at the boundary of the active site of PTPs in mediating substrate recruitment. We note that phenylalanine 76, of the so-called KNRY loop, is crucial for orienting the phosphotyrosine residue toward the nucleophilic cysteine. Mutation of phenylalanine 76 to leucine results in a 60-fold decrease in the catalytic efficiency of the enzyme. Fluorescence measurements with a competitive inhibitor, <i>p</i>-nitrocatechol sulfate, suggest that Phe76 also influences the formation of the enzyme–substrate intermediate. The structural and biochemical data for PTP10D thus highlight the role of relatively less conserved residues in PTP domains in both substrate recruitment and modulation of reaction kinetics
    corecore