21 research outputs found

    Characterisation of components of a scintillation-fiber-based compton camera

    Get PDF
    The next awaited breakthrough in proton therapy is the inclusion of the tools for online monitoring of beam range into clinical practice. Full, three-dimensional information on the deposited dose distribution can be obtained by means of prompt gamma imaging using Compton cameras. Large gamma detection efficiency and high-rate capacity can be achieved using detectors of high granularity made of a heavy scintillator. One of the possible design options is a stack of scintillating fibers. As the overall performance of such a camera depends on the position, time and energy resolution of the fibers, we investigate those properties both experimentally in measurements with a test bench as well as via Monte Carlo simulations. The obtained results point at LYSO:Ce as the best candidate for a sensitive material of a Compton camera of the discussed type

    Impact of the Coulomb field on charged-pion spectra in few-GeV heavy-ion collisions

    Get PDF
    In nuclear collisions the incident protons generate a Coulomb field which acts on produced charged particles. The impact of these interactions on charged-pion transverse-mass and rapidity spectra, as well as on pion–pion momentum correlations is investigated in Au + Au collisions at SNN\sqrt{^{S}NN} = 2.4 GeV. We show that the low-mt_{t} region (mt_{t} < 0.2 GeV / c2^{2}) can be well described with a Coulomb-modified Boltzmann distribution that also takes changes of the Coulomb field during the expansion of the fireball into account. The observed centrality dependence of the fitted mean Coulomb potential energy deviates strongly from a Apart2/3A_{part}^{2/3} scaling, indicating that, next to the fireball, the non-interacting charged spectators have to be taken into account. For the most central collisions, the Coulomb modifications of the HBT source radii are found to be consistent with the potential extracted from the single-pion transverse-mass distributions. This finding suggests that the region of homogeneity obtained from two-pion correlations coincides with the region in which the pions freeze-out. Using the inferred mean-square radius of the charge distribution at freeze-out, we have deduced a baryon density, in fair agreement with values obtained from statistical hadronization model fits to the particle yields

    Q-Learning Neural Controller for Steam Generator Station in Micro Cogeneration Systems

    No full text
    This article presents the results of the optimization of steam generator control systems powered by mixtures of liquid fuels containing biofuels. The numerical model was based on the results of experimental research of steam generator operation in an open system. The numerical model is used to build control algorithms that improve performance, increase efficiency, reduce fuel consumption and increase safety in the full range of operation of the steam generator and the cogeneration system of which it is a component. In this research, the following parameters were monitored: temperature and pressure of the circulating medium, exhaust gas temperature, oxygen content in exhaust gas, percentage control of oil burner power. Two methods of controlling the steam generator were proposed: the classic one, using the PID regulator, and the advanced one, using artificial neural networks. The work shows how the model is adapted to the real system and the impact of the control algorithms on the efficiency of the combustion process. The example is considered for the implementation of advanced control systems in micro-, small- and medium-power cogeneration and trigeneration systems in order to improve their final efficiency and increase the profitability of implementation

    The SiFi-CC project – Feasibility study of a scintillation-fiber-based Compton camera for proton therapy monitoring

    No full text
    One of the big challenges for proton therapy is the development of tools for online monitoring of the beam range, which are suited to operate in clinical conditions and can be included in the clinical practice. A Compton camera based on stacks of heavy scintillating fibers used for prompt-gamma imaging is a promising approach for this task. It provides full, three-dimensional information on the deposited dose distribution while showing a high detection efficiency and rate capability due to its high granularity. The investigation of the rate capability and detection efficiency of such a camera under clinical conditions by means of Geant4 simulations is presented along with the event construction algorithm. The results hint towards a very low pile-up rate in the detector and a relatively high detection efficiency, so that imaging of a single proton beam spot appears to be an achievable goal

    A systematic study of LYSO:Ce, LuAG:Ce and GAGG:Ce scintillating fibers properties

    No full text
    Properties of different scintillating fibers were examined and compared, as a part of the design optimization of the SiFi-CC detector, currently under development for proton therapy monitoring. Three scintillating materials were considered as candidates to constitute the active part of the detector: LYSO:Ce, LuAG:Ce and GAGG:Ce. All investigated samples had an elongated, fiber-like shape and were read out on both ends using silicon photomultipliers (SiPMs). Samples of LYSO:Ce material provided by four different manufacturers were included in the survey. Additionally, different types of optical coupling media, wrapping and coating materials were investigated. The following properties of the scintillating fibers were determined: attenuation length, position-, energy-, timing resolution and light collection. Two models were used to describe the propagation of scintillating light in the fiber and quantify the light attenuation: exponential light attenuation model (ELA) and exponential light attenuation model with light reflection (ELAR). Energy and position reconstruction were also performed using the two above methods. It was shown, that the ELAR model performs better in terms of description of the light attenuation process. However, energy and position reconstruction results are comparable for the two proposed methods. Based on the results of measurements with scintillating fibers in different configurations we concluded that LYSO:Ce fibers wrapped in Al foil (bright side facing towards the fiber) provided the best trade-off between the energy- (8.56% at 511 keV) and position (32 mm) resolutions and thus will be the optimal choice for the SiFi-CC detector. Additionally, the study of different optical coupling media showed, that the silicone pads coupling ensures good stability of the system performance and parameters

    Pressure stabilized straw tube modules for the PANDA Forward Tracker

    No full text
    The design of straw tube detector modules developed for the PANDA Forward Tracker is presented. One module consists of 32 straws with 10 mm diameter, arranged in two staggered layers, and has a very low material budget of only 8.8⋅10^{−4}X_{0}. The overpressure of the working gas mixture of 1 bar makes the module self-supporting and enables the use of lightweight and compact support frames. Detection planes in the Forward Tracker consist of modules mounted closely, without gaps, next to each other on a support frame. A module can be mounted and dismounted from the frame without the need to remove the neighboring modules, enabling fast repairs. Technical details of the detector design and the assembly procedure of the straw tubes and the straw modules as well as results of performed tests of the modules are given
    corecore