293 research outputs found

    Continuous manganese delivery via osmotic pumps for manganese-enhanced mouse MRI does not impair spatial learning but leads to skin ulceration

    Get PDF
    Manganese-enhanced magnetic resonance imaging (MEMRI) is a widely used technique in rodent neuroimaging studies. Traditionally, Mn2+ is delivered to animals via a systemic injection; however, this can lead to toxic effects at high doses. Recent studies have shown that subcutaneously implanted mini-osmotic pumps can be used to continuously deliver manganese chloride (MnCl2), and that they produce satisfactory contrast while circumventing many of the toxic side effects. However, neither the time-course of signal enhancement nor the effect of continuous Mn2+ delivery on behaviour, particularly learning and memory, have been well-characterized. Here, we investigated the effect of MnCl2 dose and route of administration on a) spatial learning in the Morris Water Maze and b) tissue signal enhancement in the mouse brain. Even as early as 3 days after pump implantation, infusion of 25–50 mg/kg/day MnCl2 via osmotic pump produced signal enhancement as good as or better than that achieved 24 h after a single 50 mg/kg intraperitoneal injection. Neither route of delivery nor MnCl2 dose adversely affected spatial learning and memory on the water maze. However, especially at higher doses, mice receiving MnCl2 via osmotic pumps developed skin ulceration which limited the imaging window. With these findings, we provide recommendations for route and dose of MnCl2 to use for different study designs

    Isotropic three-dimensional gap in the iron-arsenide superconductor LiFeAs from directional heat transport measurements

    Full text link
    The thermal conductivity k of the iron-arsenide superconductor LiFeAs (Tc ~ 18K) was measured in single crystals at temperatures down to T~50mK and in magnetic fields up to H=17T, very close to the upper critical field Hc2~18T. For both directions of the heat current, parallel and perpendicular to the tetragonal c-axis, a negligible residual linear term k/T is found as T ->0, revealing that there are no zero-energy quasiparticles in the superconducting state. The increase in k with magnetic field is the same for both current directions and it follows closely the dependence expected for an isotropic superconducting gap. There is no evidence of multi-band character, whereby the gap would be different on different Fermi-surface sheets. These findings show that the superconducting gap in LiFeAs is isotropic in 3D, without nodes or deep minima anywhere on the Fermi surface. Comparison with other iron-pnictide superconductors suggests that a nodeless isotropic gap is a common feature at optimal doping (maximal Tc).Comment: 4 pages, 3 figure

    Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    Full text link
    The Fermi surface of a metal is the fundamental basis from which its properties can be understood. In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report the discovery of a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency demonstrates that it is a distinct Fermi surface and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction caused by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap.Comment: 23 pages, 5 figure

    Direct measurement of the upper critical field in a cuprate superconductor

    Get PDF
    The upper critical field Hc2 is a fundamental measure of the pairing strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. We have used thermal conductivity as a direct probe of Hc2 in the cuprates YBa2Cu3Oy and YBa2Cu4O8 to show that there is no vortex liquid at T = 0, allowing us to use high-field resistivity measurements to map out the doping dependence of Hc2 across the phase diagram. Hc2(p) exhibits two peaks, each located at a critical point where the Fermi surface undergoes a transformation. The condensation energy obtained directly from Hc2, and previous Hc1 data, undergoes a 20-fold collapse below the higher critical point. These data provide quantitative information on the impact of competing phases in suppressing superconductivity in cuprates.Comment: to appear in Nature Communications; Supplementary Information file available upon reques

    Improving clinical research and cancer care delivery in community settings: evaluating the NCI community cancer centers program

    Get PDF
    Abstract Background In this article, we describe the National Cancer Institute (NCI) Community Cancer Centers Program (NCCCP) pilot and the evaluation designed to assess its role, function, and relevance to the NCI's research mission. In doing so, we describe the evolution of and rationale for the NCCCP concept, participating sites' characteristics, its multi-faceted aims to enhance clinical research and quality of care in community settings, and the role of strategic partnerships, both within and outside of the NCCCP network, in achieving program objectives. Discussion The evaluation of the NCCCP is conceptualized as a mixed method multi-layered assessment of organizational innovation and performance which includes mapping the evolution of site development as a means of understanding the inter- and intra-organizational change in the pilot, and the application of specific evaluation metrics for assessing the implementation, operations, and performance of the NCCCP pilot. The assessment of the cost of the pilot as an additional means of informing the longer-term feasibility and sustainability of the program is also discussed. Summary The NCCCP is a major systems-level set of organizational innovations to enhance clinical research and care delivery in diverse communities across the United States. Assessment of the extent to which the program achieves its aims will depend on a full understanding of how individual, organizational, and environmental factors align (or fail to align) to achieve these improvements, and at what cost

    Research activity and the association with mortality.

    Get PDF
    INTRODUCTION: The aims of this study were to describe the key features of acute NHS Trusts with different levels of research activity and to investigate associations between research activity and clinical outcomes. METHODS: National Institute for Health Research (NIHR) Comprehensive Clinical Research Network (CCRN) funding and number of patients recruited to NIHR Clinical Research Network (CRN) portfolio studies for each NHS Trusts were used as markers of research activity. Patient-level data for adult non-elective admissions were extracted from the English Hospital Episode Statistics (2005-10). Risk-adjusted mortality associations between Trust structures, research activity and, clinical outcomes were investigated. RESULTS: Low mortality Trusts received greater levels of funding and recruited more patients adjusted for size of Trust (n = 35, 2,349 £/bed [95% CI 1,855-2,843], 5.9 patients/bed [2.7-9.0]) than Trusts with expected (n = 63, 1,110 £/bed, [864-1,357] p<0.0001, 2.6 patients/bed [1.7-3.5] p<0.0169) or, high (n = 42, 930 £/bed [683-1,177] p = 0.0001, 1.8 patients/bed [1.4-2.1] p<0.0005) mortality rates. The most research active Trusts were those with more doctors, nurses, critical care beds, operating theatres and, made greater use of radiology. Multifactorial analysis demonstrated better survival in the top funding and patient recruitment tertiles (lowest vs. highest (odds ratio & 95% CI: funding 1.050 [1.033-1.068] p<0.0001, recruitment 1.069 [1.052-1.086] p<0.0001), middle vs. highest (funding 1.040 [1.024-1.055] p<0.0001, recruitment 1.085 [1.070-1.100] p<0.0001). CONCLUSIONS: Research active Trusts appear to have key differences in composition than less research active Trusts. Research active Trusts had lower risk-adjusted mortality for acute admissions, which persisted after adjustment for staffing and other structural factors

    Determinants of successful clinical networks : The conceptual framework and study protocol

    Get PDF
    Background Clinical networks are increasingly being viewed as an important strategy for increasing evidence-based practice and improving models of care, but success is variable and characteristics of networks with high impact are uncertain. This study takes advantage of the variability in the functioning and outcomes of networks supported by the Australian New South Wales (NSW) Agency for Clinical Innovation's non-mandatory model of clinical networks to investigate the factors that contribute to the success of clinical networks. Methods/Design The objective of this retrospective study is to examine the association between external support, organisational and program factors, and indicators of success among 19 clinical networks over a three-year period (2006-2008). The outcomes (health impact, system impact, programs implemented, engagement, user perception, and financial leverage) and explanatory factors will be collected using a web-based survey, interviews, and record review. An independent expert panel will provide judgements about the impact or extent of each network's initiatives on health and system impacts. The ratings of the expert panel will be the outcome used in multivariable analyses. Following the rating of network success, a qualitative study will be conducted to provide a more in-depth examination of the most successful networks. Discussion This is the first study to combine quantitative and qualitative methods to examine the factors that contribute to the success of clinical networks and, more generally, is the largest study of clinical networks undertaken. The adaptation of expert panel methods to rate the impacts of networks is the methodological innovation of this study. The proposed project will identify the conditions that should be established or encouraged by agencies developing clinical networks and will be of immediate use in forming strategies and programs to maximise the effectiveness of such networks

    Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models.

    Get PDF
    Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase-1 (COX-1) and COX-2 enzymes. The NLRP3 inflammasome is a multi-protein complex responsible for the processing of the proinflammatory cytokine interleukin-1β and is implicated in many inflammatory diseases. Here we show that several clinically approved and widely used NSAIDs of the fenamate class are effective and selective inhibitors of the NLRP3 inflammasome via inhibition of the volume-regulated anion channel in macrophages, independently of COX enzymes. Flufenamic acid and mefenamic acid are efficacious in NLRP3-dependent rodent models of inflammation in air pouch and peritoneum. We also show therapeutic effects of fenamates using a model of amyloid beta induced memory loss and a transgenic mouse model of Alzheimer's disease. These data suggest that fenamate NSAIDs could be repurposed as NLRP3 inflammasome inhibitors and Alzheimer's disease therapeutics

    The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia

    Get PDF
    Cytarabine (ara-C) is the most effective agent for the treatment of acute myeloid leukaemia (AML). Aberrant expression of enzymes involved in the transport/metabolism of ara-C could explain drug resistance. We determined mRNA expression of these factors using quantitative-real-time-PCR in leukemic blasts from children diagnosed with de novo AML. Expression of the inactivating enzyme pyrimidine nucleotidase-I (PN-I) was 1.8-fold lower in FAB-M5 as compared to FAB-M1/2 (P=0.007). In vitro sensitivity to deoxynucleoside analogues was determined using the MTT-assay. Human equilibrative nucleoside transporter-1 (hENT1) mRNA expression and ara-C sensitivity were significantly correlated (rp=−0.46; P=0.001), with three-fold lower hENT1 mRNA levels in resistant patients (P=0.003). hENT1 mRNA expression also seemed to correlate inversely with the LC50 values of cladribine (rp=−0.30; P=0.04), decitabine (rp=−0.29; P=0.04) and gemcitabine (rp=−0.33; P=0.02). Deoxycytidine kinase (dCK) and cytidine deaminase (CDA) mRNA expression seemed to correlate with in vitro sensitivity to gemcitabine (rp=−0.31; P=0.03) and decitabine (rp=0.33; P=0.03), respectively. The dCK/PN-I ratio correlated inversely with LC50 values for gemcitabine (rp=−0.45, P=0.001) and the dCK/CDA ratio seemed to correlate with LC50 values for decitabine (rp=−0.29; 0.04). In conclusion, decreased expression of hENT1, which transports ara-C across the cell membrane, appears to be a major factor in ara-C resistance in childhood AML
    corecore