5 research outputs found

    Insulin-Sensitizing Effects of Omega-3 Fatty Acids: Lost in Translation?

    No full text
    Omega-3 polyunsaturated fatty acids (n-3 PUFA) of marine origin, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have been long studied for their therapeutic potential in the context of type 2 diabetes, insulin resistance, and glucose homeostasis. Glaring discordance between observations in animal and human studies precludes, to date, any practical application of n-3 PUFA as nutritional therapeutics against insulin resistance in humans. Our objective in this review is to summarize current knowledge and provide an up-to-date commentary on the therapeutic value of EPA and DHA supplementation for improving insulin sensitivity in humans. We also sought to discuss potential mechanisms of n-3 PUFA action in target tissues, in specific skeletal muscle, based on our recent work, as well as in liver and adipose tissue. We conducted a literature search to include all preclinical and clinical studies performed within the last two years and to comment on representative studies published earlier. Recent studies support a growing consensus that there are beneficial effects of n-3 PUFA on insulin sensitivity in rodents. Observational studies in humans are encouraging, however, the vast majority of human intervention studies fail to demonstrate the benefit of n-3 PUFA in type 2 diabetes or insulin-resistant non-diabetic people. Nevertheless, there are still several unanswered questions regarding the potential impact of n-3 PUFA on metabolic function in humans

    Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults

    No full text
    Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capacity (high resolution respirometry) and oxidant emissions (spectrofluorometry) in isolated mitochondria. Maximal respiration was significantly lower in older compared to young. n3-PUFA did not change respiration, but significantly reduced oxidant emissions. Participants performed a single bout of resistance exercise, followed by biopsies at 15 and 18 hours post exercise. Several genes involved in muscle protein turnover were significantly altered in older adults at baseline and following exercise, yet muscle protein synthesis was similar between age groups under both conditions. Following n3-PUFA supplementation, mixed muscle, mitochondrial, and sarcoplasmic protein synthesis rates were increased in older adults before exercise. n3-PUFA increased post-exercise mitochondrial and myofibrillar protein synthesis in older adults. These results demonstrate that n3-PUFA reduce mitochondrial oxidant emissions, increase postabsorptive muscle protein synthesis, and enhance anabolic responses to exercise in older adults

    Predictors of whole-body insulin sensitivity across ages and adiposity in adult humans

    No full text
    Context: Numerous factors are purported to influence insulin sensitivity incluDing age, adiposity, mitochondrial function, and physical fitness. Univariate associations cannot address the complexity of insulin resistance or the interrelationship among potential determinants. Objective: The objective of the study was to identify significant independent predictors of insulin sensitivity across a range of age and adiposity in humans. Design, Setting, and Participants: Peripheral and hepatic insulin sensitivity were measured by two stage hyperinsulinemic-euglycemic clamps in 116 men and women (aged 19-78 y). Insulin-stimulated glucose disposal, the suppression of endogenous glucose production during hyperinsulinemia, and homeostatic model assessment of insulin resistance were tested for associations with 11 potential predictors. Abdominal subcutaneous fat, visceral fat (AFVISC), intrahepatic lipid, and intramyocellular lipid (IMCL) were quantified by magnetic resonance imaging and spectroscopy. Skeletal muscle mitochondrial respiratory capacity (state 3), coupling efficiency, and reactive oxygen species production were evaluated from muscle biopsies. Aerobic fitness was measured from whole-body maximum oxygen uptake (VO2 peak), and metabolic flexibility was determined using indirect calorimetry. Results: Multiple regression analysis revealed that AFVISC (P .0001) and intrahepatic lipid (P < .002)wereindependent negative predictors of peripheral insulin sensitivity, whereasVO2peak(P .0007) and IMCL (P.023) were positive predictors. Mitochondrial capacity and efficiency were not independent determinants of peripheral insulin sensitivity. The suppression of endogenous glucose production during hyperinsulinemia model of hepatic insulin sensitivity revealed percentage fat (P.0001) andAFVISC (P.001) as significant negative predictors. Modeling homeostatic model assessment of insulin resistance identified AFVISC (P .0001), VO2 peak (P < .001), and IMCL (P < .01) as independent predictors. Conclusion: The reduction in insulin sensitivity observed with aging is driven primarily by agerelated changes in the content and distribution of adipose tissue and is independent of muscle mitochondrial function or chronological age
    corecore