109 research outputs found

    Simultaneous initiation of radical and cationic polymerization reactions using the "G1" copper complex as photoredox catalyst: Applications of free radical/cationic hybrid photopolymerization in the composites and

    Get PDF
    WOS:000469902800007This investigation presents the use of a photoredox catalyst "G1" as a photoinitiating system for free radical/cationic hybrid polymerization under mild irradiation conditions. The G1 system (G1/iodonium salt/N-vinylcarbazole), can simultaneously initiate the free radical and cationic polymerization reactions upon exposure to a visible (405 nm) light from a Light Emitting Diode (LED) source. The multicomponent G1 system is able to simultaneously generate radical and cationic species through a catalytic photoredox process. The curing of thin samples (25 mu m), thick samples (1.4 mm) as well as the manufacture of hybrid system/glass fibers composites ( 2 to 4 mm thickness) was realized and the influence of the ratio of cationic/radical monomer blends on the polymerization kinetics was studied. The use of G1 in visible light photoinitiating system for the access to composites and 3D printing experiments was particularly outlined. G1 was also shown to have low levels of migration from the cured materials. When compared to reference materials ("F1", a similar copper complex and an anthracene derivative, dibutoxy anthracene), G1 showed better polymerization efficiency. The initiation efficiency was investigated through the real-time Fourier transform infrared (RT-FTIR) spectroscopy and optical pyrometry. Dynamical Mechanical Analysis has been used to determine the glass temperature transition of the cured hybrid system as a complementary technique

    Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources

    Get PDF
    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided

    Photochemistry and Radical Chemistry under Low Intensity Visible Light Sources: Application to Photopolymerization Reactions:

    Get PDF
    The search for radical initiators able to work under soft conditions is a great challenge, driven by the fact that the use of safe and cheap light sources is very attractive. In the present paper, a review of some recently reported photoinitiating systems for polymerization under soft conditions is provided. Different approaches based on multi-component systems (e.g., photoredox catalysis) or light harvesting photoinitiators are described and discussed. The chemical mechanisms associated with the production of free radicals usable as initiating species or mediators of cations are reported

    Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair

    Get PDF
    <div><p>Genome editing occurs in the context of chromatin, which is heterogeneous in structure and function across the genome. Chromatin heterogeneity is thought to affect genome editing efficiency, but this has been challenging to quantify due to the presence of confounding variables. Here, we develop a method that exploits the allele-specific chromatin status of imprinted genes in order to address this problem in cycling mouse embryonic stem cells (mESCs). Because maternal and paternal alleles of imprinted genes have identical DNA sequence and are situated in the same nucleus, allele-specific differences in the frequency and spectrum of mutations induced by CRISPR-Cas9 can be unequivocally attributed to epigenetic mechanisms. We found that heterochromatin can impede mutagenesis, but to a degree that depends on other key experimental parameters. Mutagenesis was impeded by up to 7-fold when Cas9 exposure was brief and when intracellular Cas9 expression was low. In contrast, the outcome of mutagenic DNA repair was unaffected by chromatin state, with similar efficiencies of homology-directed repair (HDR) and deletion spectra on maternal and paternal chromosomes. Combined, our data show that heterochromatin imposes a permeable barrier that influences the kinetics, but not the endpoint, of CRISPR-Cas9 genome editing and suggest that therapeutic applications involving low-level Cas9 exposure will be particularly affected by chromatin status.</p></div

    Beta1-Adrenoceptor Polymorphism Predicts Flecainide Action in Patients with Atrial Fibrillation

    Get PDF
    BACKGROUND: Antiarrhythmic action of flecainide is based on sodium channel blockade. Beta(1)-adrenoceptor (beta(1)AR) activation induces sodium channel inhibition, too. The aim of the present study was to evaluate the impact of different beta(1)AR genotypes on antiarrhythmic action of flecainide in patients with structural heart disease and atrial fibrillation. METHODOLOGY/PRINCIPAL FINDINGS: In 145 subjects, 87 with atrial fibrillation, genotyping was performed to identify the individual beta(1)AR Arg389Gly and Ser49Gly polymorphism. Resting heart rate during atrial fibrillation and success of flecainide-induced cardioversion were correlated with beta(1)AR genotype. The overall cardioversion rate with flecainide was 39%. The Arg389Arg genotype was associated with the highest cardioversion rate (55.5%; OR 3.30; 95% CI; 1.34-8.13; p = 0.003) compared to patients with Arg389Gly (29.5%; OR 0.44; 95% CI; 0.18-1.06; p = 0.066) and Gly389Gly (14%; OR 0.24; 95% CI 0.03-2.07; p = 0.17) variants. The single Ser49Gly polymorphism did not influence the conversion rate. In combination, patients with Arg389Gly-Ser49Gly genotype displayed the lowest conversion rate with 20.8% (OR 0.31; 95% CI; 0.10-0.93; p = 0.03). In patients with Arg389Arg variants the heart rate during atrial fibrillation was significantly higher (110+/-2.7 bpm; p = 0.03 vs. other variants) compared to Arg389Gly (104.8+/-2.4 bpm) and Gly389Gly (96.9+/-5.8 bpm) carriers. The Arg389Gly-Ser49Gly genotype was more common in patients with atrial fibrillation compared to patients without atrial fibrillation (27.6% vs. 5.2%; HR 6.98; 95% CI; 1.99-24.46; p<0.001). CONCLUSIONS: The beta(1)AR Arg389Arg genotype is associated with increased flecainide potency and higher heart rate during atrial fibrillation. The Arg389Gly-Ser49Gly genotype might be of predictive value for atrial fibrillation

    Response to Mechanical Stress Is Mediated by the TRPA Channel Painless in the Drosophila Heart

    Get PDF
    Mechanotransduction modulates cellular functions as diverse as migration, proliferation, differentiation, and apoptosis. It is crucial for organ development and homeostasis and leads to pathologies when defective. However, despite considerable efforts made in the past, the molecular basis of mechanotransduction remains poorly understood. Here, we have investigated the genetic basis of mechanotransduction in Drosophila. We show that the fly heart senses and responds to mechanical forces by regulating cardiac activity. In particular, pauses in heart activity are observed under acute mechanical constraints in vivo. We further confirm by a variety of in situ tests that these cardiac arrests constitute the biological force-induced response. In order to identify molecular components of the mechanotransduction pathway, we carried out a genetic screen based on the dependence of cardiac activity upon mechanical constraints and identified Painless, a TRPA channel. We observe a clear absence of in vivo cardiac arrest following inactivation of painless and further demonstrate that painless is autonomously required in the heart to mediate the response to mechanical stress. Furthermore, direct activation of Painless is sufficient to produce pauses in heartbeat, mimicking the pressure-induced response. Painless thus constitutes part of a mechanosensitive pathway that adjusts cardiac muscle activity to mechanical constraints. This constitutes the first in vivo demonstration that a TRPA channel can mediate cardiac mechanotransduction. Furthermore, by establishing a high-throughput system to identify the molecular players involved in mechanotransduction in the cardiovascular system, our study paves the way for understanding the mechanisms underlying a mechanotransduction pathway

    Photopolymerization under various monochromatic UV/visible LEDs and IR lamp: Diamino-anthraquinone derivatives as versatile multicolor photoinitiators

    No full text
    Diamino-anthraquinone derivatives [1,4-bis(isopropylamino)anthraquinone (SB36), 1-amino-4-anilinoanthraquinone (SB68), and 1,4-bis(p-tolylamino)anthraquinone (SG3)] exhibit absorption maxima in red light wavelength range and demonstrate broad ground state light absorption from ultraviolet to infrared light. When combined with coinitiators (e.g. iodonium salt), SB36-based photoinitiating systems exhibit the highest photoinitiation efficiency among all the studied diamino-anthraquinone derivative-based combinations for both cationic and free radical photopolymerization upon exposure to a red LED bulb. And SB36-based systems even demonstrate higher photoinitiating ability for free radical photopolymerization than that of previously studied 1,4-bis(pentylamino)anthraquinone (i.e. oil blue N)-based systems. In contrast, SG3-based photoinitiating systems show the lowest photoinitiation efficiency especially for free radical photopolymerization. Interestingly, the SB36/iodonium salt/N-vinylcarbazole system is a capable multicolor photoinitiating system able to initiate both cationic and free radical photopolymerization under the irradiation of UV to red LED bulbs and IR lamp. The photochemical mechanism associated with the production of cations and radicals from the diamino-anthraquinone derivative-based photoinitiating systems are investigated using steady state photolysis, fluorescence, laser flash photolysis, and electron spin resonance spin-trapping techniques.P. X. acknowledges funding from the Australian Research Council Future Fellowship (FT170100301)
    • …
    corecore