455 research outputs found

    A Framework for Prediction and Storage of Battery Life in IoT Devices using DNN and Blockchain

    Full text link
    As digitization increases, the need to automate various entities becomes crucial for development. The data generated by the IoT devices need to be processed accurately and in a secure manner. The basis for the success of such a scenario requires blockchain as a means of unalterable data storage to improve the overall security and trust in the system. By providing trust in an automated system, with real-time data updates to all stakeholders, an improved form of implementation takes the stage and can help reduce the stress of adaptability to complete automated systems. This research focuses on a use case with respect to the real time Internet of Things (IoT) network which is deployed at the beach of Chicago Park District. This real time data which is collected from various sensors is then used to design a predictive model using Deep Neural Networks for estimating the battery life of IoT sensors that is deployed at the beach. This proposed model could help the government to plan for placing orders of replaceable batteries before time so that there can be an uninterrupted service. Since this data is sensitive and requires to be secured, the predicted battery life value is stored in blockchain which would be a tamper-proof record of the data.Comment: Accepted for presentation at IEEE GLOBECOM 202

    Management of Sigmoid Volvulus Avoiding Sigmoid Resection

    Get PDF
    Acute sigmoid volvulus is typically caused by an excessively mobile and redundant segment of colon with a stretched mesenteric pedicle. When this segment twists on its pedicle, the result can be obstruction, ischemia and perforation. A healthy, 18-year-old Caucasian woman presented to the emergency department complaining of cramping abdominal pain, distention, constipation and obstipation for the last 72 h, accompanied by nausea, vomiting and abdominal tenderness. The patient had tympanitic percussion tones and no bowel sounds. She was diagnosed with acute sigmoid volvulus. Although urgent resective surgery seems to be the appropriate treatment for those who present with acute abdominal pain, intestinal perforation or ischemic necrosis of the intestinal mucosa, the first therapeutic choice for clinically stable patients in good general condition is considered, by many institutions, to be endoscopic decompression. Controversy exists on the decision of the time, the type of definitive treatment, the strategy and the most appropriate surgical technique, especially for teenagers for whom sigmoid resection can be avoided

    Proton decay and new contribution to 0ν2β decay in SO(10) with low-mass Z′ boson, observable n − n ¯ nn n-\overline{n} oscillation, lepton flavor violation, and rare kaon decay

    Full text link

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells

    Axillary node metastasis from differentiated thyroid carcinoma with hürthle and signet ring cell differentiation. A case of disseminated thyroid cancer with peculiar histologic findings

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Differentiated thyroid cancer is usually associated with an excellent prognosis and indolent course. Distant metastases are rare events at the onset of thyroid cancer. Among these presentations, metastasis to the axillary lymph nodes is even more unusual: only few cases were previously reported in the literature; there has been no report of axillary lymph node metastasis from follicular thyroid carcinoma. Axillary lymph node metastasis generally arises in the context of disseminated disease and carries an ominous prognosis.</p> <p>Case presentation</p> <p>Here we present a case of axillary lymph node metastasis in the context of disseminated differentiated thyroid cancer. The patient underwent near total thyroidectomy and neck and axillary lymph node dissection. A histopathological diagnosis of poorly differentiated follicular carcinoma with "signet ring cells" and Hürthle cell features was established. The patient received radioactive iodine therapy and TSH suppression therapy. Subsequently his serum thyroglobulin level decreased to 44.000 ng/ml from over 100.000 ng/ml.</p> <p>Discussion and Conclusion</p> <p>Currently there are only few reported cases of axillary node metastases from thyroid cancer, and to our knowledge, this is the first report on axillary lymph node metastasis from follicular thyroid carcinoma. "Signet ring cell" is a morphologic feature shared by both benign and, more rarely, malignant follicular thyroid neoplasm, and it generally correlates with an arrest in folliculogenesis. Our case is one of the rare "signet ring cells" carcinomas so far described.</p

    Gingival Fibroblasts Display Reduced Adhesion and Spreading on Extracellular Matrix: A Possible Basis for Scarless Tissue Repair?

    Get PDF
    Unlike skin, oral gingiva do not scar in response to injury. The basis of this difference is likely to be revealed by comparing the responses of dermal and gingival fibroblasts to fibrogenic stimuli. Previously, we showed that, compared to dermal fibroblasts, gingival fibroblasts are less responsive to the potent pro-fibrotic cytokine TGFβ, due to a reduced production of endothelin-1 (ET-1). In this report, we show that, compared to dermal fibroblasts, human gingival fibroblasts show reduced expression of pro-adhesive mRNAs and proteins including integrins α2 and α4 and focal adhesion kinase (FAK). Consistent with these observations, gingival fibroblasts are less able to adhere to and spread on both fibronectin and type I collagen. Moreover, the enhanced production of ET-1 mRNA and protein in dermal fibroblasts is reduced by the FAK/src inhibitor PP2. Given our previous observations suggesting that fibrotic fibroblasts display elevated adhesive properties, our data suggest that scarring potential may be based, at least in part, on differences in adhesive properties among fibroblasts resident in connective tissue. Controlling adhesive properties may be of benefit in controlling scarring in response to tissue injury

    Comparisons of mortality and pre-discharge respiratory outcomes in small-for-gestational-age and appropriate-for-gestational-age premature infants

    Get PDF
    BACKGROUND: There are differences in the literature regarding outcomes of premature small-for-gestational-age (SGA) and appropriate-for gestational-age (AGA) infants, possibly due to failure to take into account gestational age at birth. OBJECTIVE: To compare mortality and respiratory morbidity of SGA and AGA premature newborn infants. DESIGN/METHODS: A retrospective study was done of the 2,487 infants born without congenital anomalies at ≤36 weeks of gestation and admitted to the neonatal intensive care unit (NICU) at John Dempsey Hospital, between Jan. 1992 and Dec. 1999. Recent (1994–96) U.S. birth weight percentiles for gestational age (GA), race and gender were used to classify neonates as SGA (<10th percentile for GA) or AGA (10(th)–90th percentile for GA). Using multivariate logistic regression and survival analyses to control for GA, SGA and AGA infants were compared for mortality and respiratory morbidity. RESULTS: Controlling for GA, premature SGA infants were at a higher risk for mortality (Odds ratio 3.1, P = 0.001) and at lower risk of respiratory distress syndrome (OR = 0.71, p = 0.02) than AGA infants. However multivariate logistic regression modeling found that the odds of having respiratory distress syndrome (RDS) varied between SGA and AGA infants by GA. There was no change in RDS risk in SGA infants at GA ≤ 32 wk (OR = 1.27, 95% CI 0.32 – 1.98) but significantly decreased risk for RDS at GA > 32 wk (OR = 0.41, 95% CI 0.27 – 0.63; p < 0.01). After controlling for GA, SGA infants were observed to be at a significantly higher risk for developing chronic lung disease as compared to AGA infants (OR = 2.2, 95% CI = 1.2 – 3.9, P = 0.01). There was no significant difference between SGA and AGA infants in total days on ventilator. Among infants who survived, mean length of hospital stay was significantly higher in SGA infants born between 26–36 wks GA than AGA infants. CONCLUSIONS: Premature SGA infants have significantly higher mortality, significantly higher risk of developing chronic lung disease and longer hospital stay as compared to premature AGA infants. Even the reduced risk of RDS in infants born at ≥32 wk GA, (conferred possibly by intra-uterine stress leading to accelerated lung maturation) appears to be of transient effect and is counterbalanced by adverse effects of poor intrauterine growth on long term pulmonary outcomes such as chronic lung disease

    Abrogated Inflammatory Response Promotes Neurogenesis in a Murine Model of Japanese Encephalitis

    Get PDF
    Japanese encephalitis virus (JEV) induces neuroinflammation with typical features of viral encephalitis, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. The detrimental effects of inflammation on neurogenesis have been reported in various models of acute and chronic inflammation. We investigated whether JEV-induced inflammation has similar adverse effects on neurogenesis and whether those effects can be reversed using an anti-inflammatory compound minocycline.Here, using in vitro studies and mouse models, we observed that an acute inflammatory milieu is created in the subventricular neurogenic niche following Japanese encephalitis (JE) and a resultant impairment in neurogenesis occurs, which can be reversed with minocycline treatment. Immunohistological studies showed that proliferating cells were replenished and the population of migrating neuroblasts was restored in the niche following minocycline treatment. In vitro, we checked for the efficacy of minocycline as an anti-inflammatory compound and cytokine bead array showed that production of cyto/chemokines decreased in JEV-activated BV2 cells. Furthermore, mouse neurospheres grown in the conditioned media from JEV-activated microglia exhibit arrest in both proliferation and differentiation of the spheres compared to conditioned media from control microglia. These effects were completely reversed when conditioned media from JEV-activated and minocycline treated microglia was used.This study provides conclusive evidence that JEV-activated microglia and the resultant inflammatory molecules are anti-proliferative and anti-neurogenic for NSPCs growth and development, and therefore contribute to the viral neuropathogenesis. The role of minocycline in restoring neurogenesis may implicate enhanced neuronal repair and attenuation of the neuropsychiatric sequelae in JE survivors

    NLRP3 Inflammasome: Key Mediator of Neuroinflammation in Murine Japanese Encephalitis

    Get PDF
    Background: Japanese Encephalitis virus (JEV) is a common cause of acute and epidemic viral encephalitis. JEV infection is associated with microglial activation resulting in the production of pro-inflammatory cytokines including Interleukin-1 b (IL-1b) and Interleukin-18 (IL-18). The Pattern Recognition Receptors (PRRs) and the underlying mechanism by which microglia identify the viral particle leading to the production of these cytokines is unknown. Methodology/Principal Findings: For our studies, we have used murine model of JEV infection as well as BV-2 mouse microglia cell line. In this study, we have identified a signalling pathway which leads to the activation of caspase-1 as the key enzyme responsible for the maturation of both IL-1b and IL-18 in NACHT, LRR and PYD domains-containing protein-3 (NLRP3) dependent manner. Depletion of NLRP3 results in the reduction of caspase-1 activity and subsequent production of these cytokines. Conclusion/Significance: Our results identify a mechanism mediated by Reactive Oxygen Species (ROS) production and potassium efflux as the two danger signals that link JEV infection to caspase-1 activation resulting in subsequent IL-1b an
    corecore