13 research outputs found

    Influence of Elongation of Paclitaxel-Eluting Electrospun-Produced Stent Coating on Paclitaxel Release and Transport through the Arterial Wall after Stenting

    No full text
    It was previously shown that polycaprolactone (PCL)-based electrospun-produced paclitaxel (PTX)-enriched matrices exhibit long-term drug release kinetics and can be used as coatings for drug-eluting stents (DES). The installation of vascular stents involves a twofold increase in stent diameter and, therefore, an elongation of the matrices covering the stents, as well as the arterial wall in a stented area. We studied the influence of matrix elongation on its structure and PTX release using three different electrospun-produced matrices. The data obtained demonstrate that matrix elongation during stent installation does not lead to fiber breaks and does not interfere with the kinetics of PTX release. To study PTX diffusion through the expanded artery wall, stents coated with 5%PCL/10%HSA/3%DMSO/PTX and containing tritium-labeled PTX were installed into the freshly obtained iliac artery of a rabbit. The PTX passing through the artery wall was quantified using a scintillator β-counter. The artery retained the PTX and decreased its release from the coating. The retention of PTX by the arterial wall was more efficient when incubated in blood plasma in comparison with PBS. The retention/accumulation of PTX by the arterial wall provides a prolonged drug release and allows for the reduction in the dose of the drugs in electrospun-produced stent coatings

    Comparisons of microRNA Patterns in Plasma before and after Tumor Removal Reveal New Biomarkers of Lung Squamous Cell Carcinoma

    Get PDF
    <div><p>Lung cancer is the major human malignancy, accounting for 30% of all cancer-related deaths worldwide. Poor survival of lung cancer patients, together with late diagnosis and resistance to classic chemotherapy, highlights the need for identification of new biomarkers for early detection. Among different cancer biomarkers, small non-coding RNAs called microRNAs (miRNAs) are considered the most promising, owing to their remarkable stability, their cancer-type specificity, and their presence in body fluids. However, results of multiple previous attempts to identify circulating miRNAs specific for lung cancer are inconsistent, likely due to two main reasons: prominent variability in blood miRNA content among individuals and difficulties in distinguishing tumor-relevant miRNAs in the blood from their non-tumor counterparts. To overcome these impediments, we compared circulating miRNA profiles in patients with lung squamous cell carcinoma (SCC) before and after tumor removal, assuming that the levels of all tumor-relevant miRNAs would drop after the surgery. Our results revealed a specific panel of the miRNAs (miR-205, -19a, -19b, -30b, and -20a) whose levels decreased strikingly in the blood of patients after lung SCC surgery. Interestingly, miRNA profiling of plasma fractions of lung SCC patients revealed high levels of these miRNA species in tumor-specific exosomes; additionally, some of these miRNAs were also found to be selectively secreted to the medium by cultivated lung cancer cells. These results strengthen the notion that tumor cells secrete miRNA-containing exosomes into circulation, and that miRNA profiling of the exosomal plasma fraction may reveal powerful cancer biomarkers.</p> </div

    Scatter plot of pre-/post-surgery ratios for expression of the analyzed miRNAs in patients with lung SCC.

    No full text
    <p>Analysis was performed with BRB-ArrayTools software. A group of miRNAs on the left side of the plot (miR-205, -19a, -19b, -451, -30b, -20a, and -93) are the most abundant in the plasma of lung SCC patients and are reduced in the plasma after tumor removal.</p

    Enrichment in expression of various miRNA species in the ExoQuick-precipitated fraction (“Exosomal fraction”) compared with the ExoQuick-depleted fraction (“Exosome-free fraction”) of the same pre-operative plasma samples from patients with lung SCC.

    No full text
    <p>Enrichment in expression of various miRNA species in the ExoQuick-precipitated fraction (“Exosomal fraction”) compared with the ExoQuick-depleted fraction (“Exosome-free fraction”) of the same pre-operative plasma samples from patients with lung SCC.</p
    corecore