2 research outputs found

    Optimal controllers design for voltage control in Off-grid hybrid power system

    Get PDF
    Generally, for remote places extension of grid is uneconomical and difficult. Off-grid hybrid power systems (OGHPS) has  renewable energy sources integrated with conventional sources. OGHPS is very significant as it is the only source of electric supply for remote areas. OGHPS under study  has Induction generator (IG) for wind power generation, Photo-Voltaic source with inverter, Synchronous generator (SG) for Diesel Engine (DE) and load. Over-rated PV-inverter has capacity to supply reactive power.  SG of  DE  has Automatic voltage regulator for excitation control to regulate terminal voltage. Load and IG demands reactive power, causes reactive power imbalance hence voltage fluctuations in OGHPS. To manage reactive power for voltage control, two control structures with Proportional–Integral controller(PI), to control  inverter reactive power and  SG excitation by automatic voltage regulator are incorporated.  Improper tuning of controllers lead  to oscillatory and sluggish response. Hence in this test system both controllers need to be tune optimally. This paper proposes novel intelligent computing algorithm , Enhanced Bacterial forging algorithm (EBFA) for optimal reactive power controller for voltage control in OGHPS. Small signal model of OGHPS with proposed controller is  tested for different disturbances. simulation results  are compared  with conventional  method , proved the effectiveness of EBFA
    corecore