218 research outputs found

    Quenching and generation of random states in a kicked Ising model

    Full text link
    The kicked Ising model with both a pulsed transverse and a continuous longitudinal field is studied numerically. Starting from a large transverse field and a state that is nearly an eigenstate, the pulsed transverse field is quenched with a simultaneous enhancement of the longitudinal field. The generation of multipartite entanglement is observed along with a phenomenon akin to quantum resonance when the entanglement does not evolve for certain values of the pulse duration. Away from the resonance, the longitudinal field can drive the entanglement to near maximum values that is shown to agree well with those of random states. Further evidence is presented that the time evolved states obtained do have some statistical properties of such random states. For contrast the case when the fields have a steady value is also discussed.Comment: 7 pages, 7 figure

    Testing statistical bounds on entanglement using quantum chaos

    Full text link
    Previous results indicate that while chaos can lead to substantial entropy production, thereby maximizing dynamical entanglement, this still falls short of maximality. Random Matrix Theory (RMT) modeling of composite quantum systems, investigated recently, entails an universal distribution of the eigenvalues of the reduced density matrices. We demonstrate that these distributions are realized in quantized chaotic systems by using a model of two coupled and kicked tops. We derive an explicit statistical universal bound on entanglement, that is also valid for the case of unequal dimensionality of the Hilbert spaces involved, and show that this describes well the bounds observed using composite quantized chaotic systems such as coupled tops.Comment: 5 pages, 3 figures, to appear in PRL. New title. Revised abstract and some changes in the body of the pape

    Entanglement production in Quantized Chaotic Systems

    Full text link
    Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, presence of chaos in the system produces more entanglement. However, coupling strength between two subsystems is also very important parameter for the entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed state entanglement production in chaotic systems.Comment: 16 pages, 5 figures. To appear in Pramana:Journal of Physic

    Localized Entanglement in one-dimensional Anderson model

    Full text link
    The entanglement in one-dimensional Anderson model is studied. We show that the pairwise entanglement measured by the average concurrence has a direct relation to the localization length. The numerical study indicates that the disorder significantly reduces the average entanglement, and entanglement distribution clearly displays the entanglement localization. The maximal pairwise entanglement exhibits a maximum as the disorder strength increases,experiencing a transition from increase to decrease. The entanglement between the center of localization and other site decreases exponentially along the spatial direction. Finally,we study effects of disorder on dynamical properties of entanglement.Comment: 5 pages, 6 figure

    Assessment of KaraShieldTM properties in supporting the immune health of healthy subjects: a randomized, parallel, double-blind, placebo-controlled clinical study

    Get PDF
    Background: This study aims to investigate whether a novel herbal extract blend, KaraShieldTM could be used to help build a healthy immune system that could reduce the number of incidences or severity of common upper respiratory tract infections (URTIs). Methods: A randomized, parallel, double-blind, placebo-controlled clinical study of 60 days was done on 120 healthy subjects allocated to a treatment arm (500 mg/day, KaraShieldTM) or placebo arm (500 mg/day). Results: A 500 mg daily dosage of KaraShieldTM significantly improved the subjects' immune health as measured by parameters such as the frequency and severity of upper respiratory tract conditions, the serum IgG level, mean ISQ raw score, WURSS scale score, CRP level in the serum and WHOQOL-BREF score at the end of the study period of sixty days from the baseline compared to that of the placebo. The investigated product was found to be safe and well tolerated by the subjects. Conclusions: KaraShieldTM may represent a promising safe and effective formulation for building a healthy immune system that could then counteract URTIs

    Neurology training around the world

    Get PDF
    Lancet Neurol. 2003 Sep;2(9):572-9. Neurology training around the world. Hooker J, Eccher M, Lakshminarayan K, Souza-Lima FC, Rejdak K, Kwiecinski H, Corea F, Lima JM. The National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, UK. Comment in: Lancet Neurol. 2003 Oct;2(10):594; discussion 594

    Entanglement, avoided crossings and quantum chaos in an Ising model with a tilted magnetic field

    Full text link
    We study a one-dimensional Ising model with a magnetic field and show that tilting the field induces a transition to quantum chaos. We explore the stationary states of this Hamiltonian to show the intimate connection between entanglement and avoided crossings. In general entanglement gets exchanged between the states undergoing an avoided crossing with an overall enhancement of multipartite entanglement at the closest point of approach, simultaneously accompanied by diminishing two-body entanglement as measured by concurrence. We find that both for stationary as well as nonstationary states, nonintegrability leads to a destruction of two-body correlations and distributes entanglement more globally.Comment: Corrections in two figure captions and one new reference. To appear in Phys. Rev.

    Semiclassical properties and chaos degree for the quantum baker's map

    Get PDF
    We study the chaotic behaviour and the quantum-classical correspondence for the baker's map. Correspondence between quantum and classical expectation values is investigated and it is numerically shown that it is lost at the logarithmic timescale. The quantum chaos degree is computed and it is demonstrated that it describes the chaotic features of the model. The correspondence between classical and quantum chaos degrees is considered.Comment: 30 pages, 4 figures, accepted for publication in J. Math. Phy
    corecore