Quantum chaos is a subject whose major goal is to identify and to investigate
different quantum signatures of classical chaos. Here we study entanglement
production in coupled chaotic systems as a possible quantum indicator of
classical chaos. We use coupled kicked tops as a model for our extensive
numerical studies. We find that, in general, presence of chaos in the system
produces more entanglement. However, coupling strength between two subsystems
is also very important parameter for the entanglement production. Here we show
how chaos can lead to large entanglement which is universal and describable by
random matrix theory (RMT). We also explain entanglement production in coupled
strongly chaotic systems by deriving a formula based on RMT. This formula is
valid for arbitrary coupling strengths, as well as for sufficiently long time.
Here we investigate also the effect of chaos on the entanglement production for
the mixed initial state. We find that many properties of the mixed state
entanglement production are qualitatively similar to the pure state
entanglement production. We however still lack an analytical understanding of
the mixed state entanglement production in chaotic systems.Comment: 16 pages, 5 figures. To appear in Pramana:Journal of Physic