20 research outputs found

    Stochastic dynamics and control of a driven nonlinear spin chain: the role of Arnold diffusion

    Full text link
    We study a chain of non-linear, interacting spins driven by a static and a time-dependent magnetic field. The aim is to identify the conditions for the locally and temporally controlled spin switching. Analytical and full numerical calculations show the possibility of stochastic control if the underlying semi-classical dynamics is chaotic. This is achievable by tuning the external field parameters according to the method described in this paper. We show analytically for a finite spin chain that Arnold diffusion is the underlying mechanism for the present stochastic control. Quantum mechanically we consider the regime where the classical dynamics is regular or chaotic. For the latter we utilize the random matrix theory. The efficiency and the stability of the non-equilibrium quantum spin-states are quantified by the time-dependence of the Bargmann angle related to the geometric phases of the states.Comment: Journal-ref: to appear in J.Phys.

    Frailty, delirium and hospital mortality of older adults admitted to intensive care : the Delirium (Deli) in ICU study

    Get PDF
    Background: Clinical frailty among older adults admitted to intensive care has been proposed as an important determinant of patient outcomes. Among this group of patients, an acute episode of delirium is also common, but its relationship to frailty and increased risk of mortality has not been extensively explored. Therefore, the aim of this study was to explore the relationship between clinical frailty, delirium and hospital mortality of older adults admitted to intensive care. Methods: This study is part of a Delirium in Intensive Care (Deli) Study. During the initial 6-month baseline period, clinical frailty status on admission to intensive care, among adults aged 50 years or more; acute episodes of delirium; and the outcomes of intensive care and hospital stay were explored. Results: During the 6-month baseline period, 997 patients, aged 50 years or more, were included in this study. The average age was 71 years (IQR, 63–79); 55% were male (n = 537). Among these patients, 39.2% (95% CI 36.1–42.3%, n = 396) had a Clinical Frailty Score (CFS) of 5 or more, and 13.0% (n = 127) had at least one acute episode of delirium. Frail patients were at greater risk of an episode of delirium (17% versus 10%, adjusted rate ratio (adjRR) = 1.71, 95% confidence interval (CI) 1.20–2.43, p = 0.003), had a longer hospital stay (2.6 days, 95% CI 1–7 days, p = 0.009) and had a higher risk of hospital mortality (19% versus 7%, adjRR = 2.54, 95% CI 1.72–3.75, p < 0.001), when compared to non-frail patients. Patients who were frail and experienced an acute episode of delirium in the intensive care had a 35% rate of hospital mortality versus 10% among non-frail patients who also experienced delirium in the ICU. Conclusion: Frailty and delirium significantly increase the risk of hospital mortality. Therefore, it is important to identify patients who are frail and institute measures to reduce the risk of adverse events in the ICU such as delirium and, importantly, to discuss these issues in an open and empathetic way with the patient and their families

    TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.)

    Full text link
    An efficient and simple procedure for inducing high frequency direct shoot organogenesis and somatic embryogenesis in lentil from cotyledonary node explants (without both the cotyledons) in response to TDZ alone is reported. TDZ at concentration lower than 2.0 μM induced shoot organogenesis whereas at higher concentration (2.5–15 μM) it caused a shift in regeneration from shoot organogenesis to somatic embryogenesis. The cotyledonary node and seedling cultures developed only shoots even at high concentrations of BAP and TDZ, respectively. TDZ at 0.5 and 5.0 μM was found to be optimal for inducing an average of 4–5 shoots per cotyledonary node in 93 % of the cultures and 55 somatic embryos in 68 % of the cultures, respectively. The somatic embryos were germinated when transferred to lower TDZ concentration (0.5–1.0 μM). The shoots were rooted on MS basal medium containing 2.5 μM IBA. The plantlets were obtained within 8 weeks from initiation of culture and were morphologically similar to seed-raised plants. The possible role of stress in thidiazuron induced somatic embryogenesis is discussed

    Identification of groundwater contamination zones and its sources by using multivariate statistical approach in Thirumanimuthar sub-basin, Tamil Nadu, India

    No full text
    Hydrogeochemical studies have been made in the study area by using multivariate statistical analysis, which is mainly helpful for interpretation of complex data matrices to better understand the geochemical evolution of the area and it allows identifying the possible factors/sources that influence water systems. The spatial distribution of electrical conductivity reveals that an untreated industrial effluents, landfill and anthropogenic activities affecting their groundwater quality in its vicinity and the surrounding area. The dominance of ions was in the order of Na+ > Ca2+ > Mg2+ > K+ = Cl− > HCO3 − > SO4 2− > NO3 − and Ca2+ > Mg2+ > Na+ > K+ = HCO3 − > Cl− > NO3 − > SO4 2− during pre monsoon (PRM) and post monsoon (POM), respectively. The statistical results reveals that the groundwater chemistry gets altered by silicate weathering, ion exchange, leaching, anthropogenic input from agricultural return flow and longer distance of migrating groundwater. The hydrogeochemical regimes are distributed along the upstream side, northwestern, western and eastern parts of the study area. The study highlights the descriptive capabilities of conventional and multivariate techniques as effective tools in groundwater evaluation

    Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India

    No full text
    The study of groundwater hydrogeochemistry of a hard rock aquifer system in Thoothukudi district has resulted in a large geochemical data set. A total of 100 water samples representing various lithologies like Hornblende Biotite Gneiss, Alluvium Marine, alluvium Fluvial, Quartzite, Charnockite, Granite and Sandstone were collected for two different seasons and analyzed for major ions like Ca2+, Mg2+, Na+, K+, HCO3 -, Cl-, SO4 2-, NO3 -, PO4 -, F- and H4SiO4. Statistical analysis of the data has been attempted to unravel the hidden relationship between ions. Correlation analyses and factor analyses were applied to classify the groundwater samples and to identify the geochemical processes controlling groundwater geochemistry. Factor analysis indicates that sea water intrusion followed by leaching of secondary salts, weathering and anthropogenic impacts are the dominant factors controlling hydrogeochemistry of groundwater in the study area. Factor score overlay indicate major active hydrogeochemical regimes are spread throughout the Eastern, Northwestern and Southeastern parts of the study area. The dominant ions controlling the groundwater chemistry irrespective of season are Cl-, Na+, Mg2+, Ca2+, SO4 2-, K+ and NO3 -. An attempt has also been made to note the seasonal variation of the factor representations in the study area. This study also illustrates the usefulness of statistical analysis to improve the understanding of groundwater systems and estimates of the extent of salinity/salt water intrusion
    corecore