1,020 research outputs found
Quantum Yield Calculations for Strongly Absorbing Chromophores
This article demonstrates that a commonly-made assumption in quantum yield
calculations may produce errors of up to 25% in extreme cases and can be
corrected by a simple modification to the analysis.Comment: 3 pages, 2 figures. Accepted by Journal of Fluorescenc
TRASER - Total Reflection Amplification of Spontaneous Emission of Radiation
Background and Objective: Light and lasers in medical therapy have made dramatic strides since their invention five decades ago. However, the manufacture of lasers can be complex and expensive which often makes treatments limited and costly. Further, no single laser will provide the correct parameters to treat all things. Hence, laser specialists often need multiple devices to practice their specialty. A new concept is described herein that has the potential to replace many lasers and light sources with a single ‘tunable ’ device. Study Design/Material and Methods: This device amplifies spontaneous emission of radiation by capturing and retaining photons through total internal reflection, hence the acronym Total Reflection Amplification of Spontaneous Emission of Radiation, or TRASER. Results: Specific peaks of light can be produced in a reproducible manner with high peak powers of variable pulse durations, a large spot size, and high repetition rate. Conclusion: Considering the characteristics and parameters of Traser technology, it is possible that this one device woul
Global parameter identification of stochastic reaction networks from single trajectories
We consider the problem of inferring the unknown parameters of a stochastic
biochemical network model from a single measured time-course of the
concentration of some of the involved species. Such measurements are available,
e.g., from live-cell fluorescence microscopy in image-based systems biology. In
addition, fluctuation time-courses from, e.g., fluorescence correlation
spectroscopy provide additional information about the system dynamics that can
be used to more robustly infer parameters than when considering only mean
concentrations. Estimating model parameters from a single experimental
trajectory enables single-cell measurements and quantification of cell--cell
variability. We propose a novel combination of an adaptive Monte Carlo sampler,
called Gaussian Adaptation, and efficient exact stochastic simulation
algorithms that allows parameter identification from single stochastic
trajectories. We benchmark the proposed method on a linear and a non-linear
reaction network at steady state and during transient phases. In addition, we
demonstrate that the present method also provides an ellipsoidal volume
estimate of the viable part of parameter space and is able to estimate the
physical volume of the compartment in which the observed reactions take place.Comment: Article in print as a book chapter in Springer's "Advances in Systems
Biology
Absorption Enhancement in Peridinin–Chlorophyll–Protein Light-Harvesting Complexes Coupled to Semicontinuous Silver Film
We report on experimental and theoretical studies of plasmon-induced effects in a hybrid nanostructure composed of light-harvesting complexes and metallic nanoparticles in the form of semicontinuous silver film. The results of continuous-wave and time-resolved spectroscopy indicate that absorption of the light-harvesting complexes is strongly enhanced upon coupling with the metallic film spaced by 25Â nm of a dielectric silica layer. This conclusion is corroborated by modeling, which confirms the morphology of the silver island film
Emerging applications of fluorescence spectroscopy in medical microbiology field
There are many diagnostic techniques and methods available for diagnosis of medically important microorganisms like bacteria, viruses, fungi and parasites. But, almost all these techniques and methods have some limitations or inconvenience. Most of these techniques are laborious, time consuming and with chances of false positive or false negative results. It warrants the need of a diagnostic technique which can overcome these limitations and problems. At present, there is emerging trend to use Fluorescence spectroscopy as a diagnostic as well as research tool in many fields of medical sciences. Here, we will critically discuss research studies which propose that Fluorescence spectroscopy may be an excellent diagnostic as well as excellent research tool in medical microbiology field with high sensitivity and specificity
Nanostructured Silver Substrates With Stable and Universal SERS Properties: Application to Organic Molecules and Semiconductor Nanoparticles
Nanostructured silver films have been prepared by thermal deposition on silicon, and their properties as SERS substrates investigated. The optimal conditions of the post-growth annealing of the substrates were established. Atomic force microscopy study revealed that the silver films with relatively dense and homogeneous arrays of 60–80-nm high pyramidal nanoislands are the most efficient for SERS of both organic dye and inorganic nanoparticles analytes. The noticeable enhancement of the Raman signal from colloidal nanoparticles with the help of silver island films is reported for the first time
Excitation-wavelength Dependent Fluorescence of Ethyl 5-(4-aminophenyl)-3-amino-2,4-dicyanobenzoate
The excitation wavelength dependence of the steady-state and time-resolved emission spectra of ethyl 5-(4-aminophenyl)-3-amino-2,4-dicyanobenzoate (EAADCy) in tetrahydrofuran (THF) at room temperature has been examined. It is found that the ratio of the fluorescence intensity of the long-wavelength and short-wavelength fluorescence bands strongly depends on the excitation wavelength, whereas the wavelengths of the fluorescence excitation and fluorescence bands maxima are independent on the observation/excitation wavelengths. The dynamic Stokes shift of fluorophore in locally excited (LE) and intramolecular charge transfer (ICT) states has been studied with a time resolution about 30Â ps. The difference between Stokes shift in the LE and ICT states was attributed to the solvent response to the large photoinduced dipole moment of EAADCy in the fluorescent charge transfer state. On this base we can state that, the relaxation of the polar solvent molecules around the fluorophore was observed
- …