40 research outputs found

    Development of the Advancing the Patient Experience (APEX) in COPD Registry : A Modified Delphi Study

    Get PDF
    Funding statement: APEX COPD is conducted by Optimum Patient Care (OPC) Global Limited, and co-funded by OPC Global and Boehringer Ingelheim Pharmaceuticals, Inc. (BIPI). The author(s) meet criteria for authorship as recommended by the International Committee of Medical Journal Editors (ICMJE). The authors received no direct compensation related to the development of the manuscript. Writing, editorial support, and/or formatting assistance was provided by Ms. Audrey Ang of the Observational and Pragmatic Research Institute, Singapore, and Dr. Lisa Buttle of Medscript Ltd, Ireland, which was funded by BIPI. BIPI was given the opportunity to review the manuscript for medical and scientific accuracy as well as intellectual property considerations. Acknowledgments The author(s) meet criteria for authorship as recommended by the International Committee of Medical Journal Editors (ICMJE). We thank Dr. Alvaro Aranda (Hospital Auxilio Mutuo, San Juan, Puerto Rico) for his scientific and clinical contributions during the drafting of this manuscript. We also thank Ms. Audrey Ang for editorial assistance, Ms. Bronte Sawyer for project coordination, and Dr. Lisa Buttle for assistance with drafting the article. Dr. Ruth B. Murray is acknowledged for her substantial contribution to the interpretation, summarization and presentation of data in this article and significant intellectual input to the manuscript. She has provided her final approval of the version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Dr. Ruth B. Murray is the founder and director of Medscript Ltd., a company that provided writing and editorial support for APEX COPD publications.Peer reviewedPostprin

    Age-associated B cells predict impaired humoral immunity after COVID-19 vaccination in patients receiving immune checkpoint blockade

    Get PDF
    Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcÎłRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination

    miR-27b inhibits fibroblast activation via targeting TGFB signaling pathway

    Get PDF
    Background: MicroRNAs are a group of small RNAs that regulate gene expression at the posttranscriptional level. They regulate almost every aspect of cellular processes. In this study, we investigated whether miR-27b regulates pulmonary fibroblast activation.Results: We found that miR-27b was down-regulated in fibrotic lungs and fibroblasts from an experimental mouse model of pulmonary fibrosis. The overexpression of miR-27b with a lentiviral vector inhibited TGFB1-stimulated mRNA expression of collagens (COL1A1, COL3A1, and COL4A1) and alpha-smooth muscle actin, and protein expression of Col3A1 and alpha-smooth muscle actin in LL29 human pulmonary fibroblasts. miR-27b also reduced contractile activity of LL29. TGFB receptor 1 and SMAD2 were identified as the targets of miR-27b by 3'-untranslated region luciferase reporter and western blotting assays.Conclusions: Our results suggest that miR-27b is an anti-fibrotic microRNA that inhibits fibroblast activation by targeting TGFB receptor 1 and SMAD2. This discovery may provide new targets for therapeutic interventions of idiopathic pulmonary fibrosis.Peer reviewedPhysiological SciencesOklahoma Center for Respiratory and Infectious Disease

    Association between pre-biologic T2-biomaker combinations and response to biologics in patients with severe asthma

    Get PDF
    Funding This study was conducted by the Observational and Pragmatic Research Institute (OPRI) Pte Ltd and was partially funded by Optimum Patient Care Global (OPCG) and AstraZeneca Ltd. No funding was received by the OPRI for its contribution. The International Severe Asthma Registry (ISAR) is operated by OPCG and co-funded by OPCG and AstraZenecaPeer reviewe
    corecore