18 research outputs found

    The LEPR gene is associated with reproductive seasonality traits in Rasa Aragonesa sheep

    Get PDF
    The aim of this study was to characterize and identify causative polymorphisms in the leptin receptor (LEPR) gene responsible for the seasonal variation of reproductive traits in sheep. Three reproductive seasonality traits were studied: the total days of anoestrous (TDA), the progesterone cycling months (P4CM) and the oestrous cycling months (OCM). In total, 18 SNPs were detected in 33 ewes with extreme values for TDA and OCM. Six SNPs were non-synonymous substitutions and two of them were predicted in silico as deleterious: rs596133197 and rs403578195. These polymorphisms were then validated in 239 ewes. The SNP rs403578195, located in exon 8 and leading to a change of alanine to glycine (Ala284Gly) in the extracellular domain of the protein, was associated with the OCM trait, being the G allele associated with a decrease of 12 percent of the OCM trait. Haplotype analyses also suggested the involvement of other non-synonymous SNP located in exon 20 (rs405459906). This SNP also produces an amino acid change (Lys1069Glu) in the intracellular domain of the protein and segregates independently of rs403578195. These results confirm for the first time the role of the LEPR gene in sheep reproductive seasonality

    Genome-wide analysis reveals that the cytochrome P450 family 7 subfamily B member 1 gene is implicated in growth traits in Rasa Aragonesa ewes

    Get PDF
    Sheep are very well adapted to changing environments and are able to produce and reproduce with low inputs in feed and water better than other domestic ruminants. Indeed, the ewe body condition score (BCS) and live weight (LW) play a significant role in productive and reproductive performance. This work conducts a genome-wide association study (GWAS) to detect genetic variants associated with growth traits in 225 adult ewes of the Rasa Aragonesa breed by using the genotypes from 50 k and HD Illumina Ovine BeadChip. These ewes were measured for LW, BCS and growth rate (GR) for 2 years, from January to September. Corrected phenotypes for BCS, LW and GR were estimated and used as input for the GWAS. Only one single nucleotide polymorphism (SNP) rs425509273 in chromosome 9 (OAR9), associated with the GR, overcame the genome-wise significance level. One, three and nine SNPs were associated at the chromosome-wise level (FDR 10%) for traits BCS, LW and GR, respectively. The cytochrome P450 family 7 subfamily B member 1 (CYP7B1) candidate gene, located 83 kb upstream from SNP rs425509273 in OAR9, was partially isolated and Sanger-sequenced. Fifteen polymorphisms comprising 12 SNPs, two indels and one polyC, were detected in promoter, exon 1, 3, 5, and intron 1–3 region. The SNP association analysis of the polymorphisms located close to the transcription start site (TSS) showed that a 22 bp insertion located at −58 nucleotides from the TSS (indel (−58)), a polyC (−25), and two A/G SNPs (SNP3 (−114) and SNP5 (−63)) were associated with the GR trait, whereas only the indel (−58) was associated with the BCS trait. The haplotype analysis confirmed these results. The functional characterisation of the polymorphisms at CYP7B1 gene in liver by real-time quantitative PCR analysis confirmed that the mutations in the promoter region affected CYP7B1 gene expression. Our results demonstrated the involvement of the CYP7B1 gene promoter on GR and BCS traits in Rasa Aragonesa. These findings suggest that variations in ovine CYP7B1 may serve as potential genetic markers to be used in breeding programmes to improve growth characteristics that could influence reproductive traits
    corecore