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Simple Summary: Seasonality of reproduction is one of the limiting factor of sheep production,
with the leptin receptor (LEPR) gene associated with some reproductive traits in different species.
Thereby, we searched for polymorphisms in the ovine LEPR gene and associated them with three
reproductive seasonality traits: the total days of anoestrous (TDA) and the progesterone cycling
months (P4CM), both based on blood progesterone level and related to seasonal ovarian function;
and the oestrous cycling months (OCM) as an indicator of oestrous behaviour. Two non-synonymous
and non-linked single nucleotide polymorphisms (SNPs) in the LEPR gene were involved in the OCM
trait (rs403578195 and rs405459906). These findings show for the first time the involvement of LEPR
gene in seasonality reproduction in sheep and will help to improve genetic selection programs by
implementing the genotyping of reproducers, which might increase the productivity of meat sheep.

Abstract: The aim of this study was to characterize and identify causative polymorphisms in
the leptin receptor (LEPR) gene responsible for the seasonal variation of reproductive traits in
sheep. Three reproductive seasonality traits were studied: the total days of anoestrous (TDA),
the progesterone cycling months (P4CM) and the oestrous cycling months (OCM). In total, 18 SNPs
were detected in 33 ewes with extreme values for TDA and OCM. Six SNPs were non-synonymous
substitutions and two of them were predicted in silico as deleterious: rs596133197 and rs403578195.
These polymorphisms were then validated in 239 ewes. The SNP rs403578195, located in exon 8
and leading to a change of alanine to glycine (Ala284Gly) in the extracellular domain of the protein,
was associated with the OCM trait, being the G allele associated with a decrease of 12 percent of
the OCM trait. Haplotype analyses also suggested the involvement of other non-synonymous SNP
located in exon 20 (rs405459906). This SNP also produces an amino acid change (Lys1069Glu) in the
intracellular domain of the protein and segregates independently of rs403578195. These results
confirm for the first time the role of the LEPR gene in sheep reproductive seasonality.

Keywords: leptin receptor; reproductive seasonality; Rasa Aragonesa; SNP; haplotype

1. Introduction

The seasonality of reproduction in sheep is a general phenomenon in breeds originating from
temperate climates, such as those raised in the Mediterranean basin. Changes in the photoperiod at
temperate latitudes provide the main external cue that controls the timing of out-of-season fertility [1].

Animals 2020, 10, 2448; doi:10.3390/ani10122448 www.mdpi.com/journal/animals

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/389598329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/animals
http://www.mdpi.com
https://orcid.org/0000-0002-1621-3102
https://orcid.org/0000-0001-6042-3134
https://orcid.org/0000-0001-9513-0219
http://dx.doi.org/10.3390/ani10122448
http://www.mdpi.com/journal/animals
https://www.mdpi.com/2076-2615/10/12/2448?type=check_update&version=2


Animals 2020, 10, 2448 2 of 15

In Rasa Aragonesa, an autochthonous Mediterranean sheep breed from northeastern Spain reared
for meat purposes, the maximal reproductive activity is associated with short days, with the highest
percentage of ewes exhibiting ovulatory activities from August to March. This reproductive seasonality
induces major variation in lamb production and therefore in the market price, which suffers a decline
in the price of lambs from late spring to early fall when the lamb supply is the highest. To improve the
reproductive efficiency of sheep, some producers use hormonal treatments and lighting manipulation,
alone or in combination, to induce ewes to lamb out of season. Both treatments efficiently induce
oestrous but add expenses to producers [2]. However, the increasing demand for hormone-free products
has led to the search for alternative methods, such as the introduction of rams to previously isolated
anoestrous ewes to ensure the induction of ovulation and oestrous (ram effect), nutritional flushing
or the use of genetic markers to select as reproducers those animals with alleles associated with an
increase in out-of-season fertility. In the case of Rasa Aragonesa, Folch and Alabart [3] showed that
approximately 25% of ewes have spontaneous ovulations in spring and can be naturally mated
throughout the year if management conditions and nutrition are suitable. It was proven that this
spring ovulatory activity is under genetic control with heritability and repeatability values of 0.20 and
0.30, respectively [4]. Seasonality is a complex trait with a strong environmental influence, expressed
only in ewes, and manifested relatively late throughout life, and only in some management systems [5].
In this context, genomic approaches have been used to detect genes or genome regions influencing
the ability of ewes to lamb out of season [5–19]. Including the selection of genotypes less sensitive to
reproductive seasonality in breeding programs would be an alternative to increase the profitability
and efficiency of the ovine sector.

Leptin gene polymorphisms have drawn much attention from animal scientists for their possible
roles in economically important productive and reproductive traits [20]. In fact, leptin is primarily
known for its role in the regulation of whole-body energy balance by acting on the central nervous system
and influencing fat deposition in animals through the control of appetite and energy expenditure [21].
Recent experimental evidence has shown that some SNPs in the leptin receptor (LEPR) gene are
associated with reproductive traits [22,23]. The physiological effects of LEPR on reproduction, including
puberty, the oestrous cycle, pregnancy, lactation, and even the early stages of embryonic development,
have been proven [24,25]. Numerous research studies have shown that leptin controls sexual maturity
at the hypothalamus level [26–28]. Moreover, the occurrence and involvement of leptin in the
hypothalamus with the release of gonadotropic hormone confirms its role in sexual maturity or
reproduction [29]. Thus, leptin seems to be an important link between metabolic status and the
neuroendocrine axis [30]. However, melatonin influences reproductive function via activation of
receptor sites within the hypothalamic-pituitary-gonadal axis [31]. The melatonin receptor subtype
1A (MTNR1A) is considered a key gene that mediates photoperiodic reproductive seasonality in
sheep [5–8,12–19]. Furthermore, expression of LEPR was detected in the suprachiasmatic nucleus
(SCN), the mammalian “biological clock”, and the pineal gland of ruminant species [32], suggesting
an interaction between photoperiod, melatonin, and leptin [1]. Although receptors for leptin and
melatonin have not yet been colocalized, their presence has been demonstrated in similar hypothalamic
regions in sheep [32–34].

Leptin and its receptor have been suggested as markers for enhancing productivity in livestock
and are also potential candidates for marker-assisted selection [35]. In sheep, polymorphisms in
LEPR have been associated with delayed onset of puberty and with decreased ovulation and lambing
rates in prolific Davisdale sheep [36], but no studies have been performed concerning the LEPR gene
and its involvement in seasonality reproduction in sheep. Therefore, this study aimed to identify
polymorphisms in several regions of the LEPR gene in Rasa Aragonesa sheep and to test their association
with reproductive seasonality traits.
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2. Materials and Methods

2.1. Ethics Statement

All experimental procedures were performed in accordance with the guidelines of the European
Union (2003/65/CE) and Spanish regulations (RD 1201/2005, BOE 252/34367e91) for the use and care of
animals in research. No hormonal treatments were applied to the ewes during the study.

2.2. Animal Samples

As described by Martinez-Royo et al. [11], phenotypic seasonality data were obtained from a Rasa
Aragonesa sheep flock managed in an experimental farm (“Pardina de Ayés”) owned by Oviaragón
S.C.L. The experimental period lasted from January to August 2012. The experimental flock was
composed of 239 ewes in two age groups: 155 mature (5.2–7.2 y, 5.5 ± 0.5; mean ± SD) and 84 young
(all 1.9 y, 1.9 ± 0.0) at the beginning of the experiment. Every three weeks, individual live weight
(LW) and body condition score (BCS) on a 1 to 5 scale [37] were assessed. The mean LW and BCS
were similar in both age groups. The pooled overall means and standard deviations for the whole
experimental period were 52.5 ± 7.7 kg and 2.9 ± 0.3 for LW and BCS, respectively. Management of the
ewes was described by Martinez-Royo et al. [11]; all ewes were handled in a single lot and subjected to
the same management, nutrition and environmental conditions.

2.3. Measurement of Reproductive Seasonality Traits

Three reproductive seasonality traits were considered and described by Martinez-Royo et al. [11].
Briefly, the first one was the total days of anoestrous (TDA), based on weekly individual plasma
progesterone levels. TDA was the sum of days in anoestrous, with anoestrous defined as those periods
with three or more consecutive progesterone concentrations lower than 0.5 ng/mL. Likewise, ewes were
not considered for this study if they were not cycling in the preceding breeding season (based on
three samples taken one week apart in October), with progesterone levels under the threshold in
all samples taken in January and with more than 4 consecutive samples higher than or equal to the
threshold (possible pathological ewes). The second reproductive seasonality trait was the progesterone
cycling months (P4CM), defined for each ewe as the rate of cycling months based on progesterone
determinations. When the progesterone level was higher than or equal to 0.5 ng/mL in at least one
blood sample in that month, the ewe was considered cyclic in a particular month. Finally, the third
trait considered was the oestrous cycling months (OCM), defined as the rate of months cycling based
on daily oestrous records for each ewe. Eight vasectomised rams fitted with harnesses and marking
crayons were mixed with the ewes, and daily oestrous detection was performed [38]. Thus, after natural
mating, oestrous was recorded as a colour mark on the rump of the ewes.

2.4. LEPR Gene Characterization

Genomic DNA was extracted from blood samples using standard protocols. The ovine LEPR
gene is located on the chromosome OAR1, covering approximately 99 kb with 20 exons (GenBank acc.
number NC_019458). Twelve exons were chosen to characterize the LEPR gene. These exons were
selected based on having non-synonymous polymorphisms in the Ensembl Variation database (https:
//www.ensembl.org/info/genome/variation/index.html) on the Oar 3.1 version of the sheep genome.
Primers were designed using Primer3 software version 0.4.0 (http://bioinfo.ut.ee/primer3-0.4.0/),
and were designed in the intron regions around the targeted exon. The details of the oligonucleotide
sequences, the annealing temperature and expected product size are summarized in Table 1. Polymerase
chain reactions (PCRs) were performed in a 25 µL reaction including 25 ng of genomic DNA, 5 pmol
of each primer, 200 nM dNTPs, 2.4 mM MgCl2, 50 mM KCl, 10 mM Tris-HCl, 0.1% Triton X-100 and
1 U Taq polymerase (Biotools, Madrid, Spain). The cycling conditions were as follows: an initial
denaturation step of 94 ◦C for 3 min, 35 cycles of 94 ◦C for 30 s, annealing temperature for 30 s,
and 72 ◦C for 30 s except for fragments 5, 6 and 11, which were 45 s, and a final extension step

https://www.ensembl.org/info/genome/variation/index.html
https://www.ensembl.org/info/genome/variation/index.html
http://bioinfo.ut.ee/primer3-0.4.0/


Animals 2020, 10, 2448 4 of 15

of 72 ◦C for 5 min. Direct Sanger sequencing of the PCR products from the 12 exons of 33 ewes
with extreme values for TDA (low TDA: 0 days, n = 15; high TDA: 149.3 ± 22.3 days, n = 18)
and OCM (low OCM: 0.24 ± 0.12, n = 18; high OCM: 0.88 ± 0.09, n = 15) were used to search for
polymorphisms in the experimental population. The PCR products from genomic DNA were purified
using the FlavorPrep Gel/PCR purification mini kit (Flavorgen, Ibian, Zaragoza, Spain) according
to the manufacturer’s instructions. The PCR products were sequenced in both directions by STAB
Vida (Caparica, Portugal) using an ABI 3730XL sequencer (Applied Biosystems, Foster City, CA, USA).
The homology searches were performed using BLAST (National Centre for Biotechnology Information:
https://blast.ncbi.nlm.nih.gov/Blast.cgi). For alignment of the sequences, CLUSTAL Omega (http:
//www.ebi.ac.uk/Tools/msa/clustalo/) and BioEdit [39] software were used. For prediction of the
possible impact of an amino acid substitution on the structure and function of a protein, Variant Effect
Predictor software (VEP: http://www.ensembl.org/Ovisaries/Tools/VEP?db=core) and PolyPhen-2
(http://genetics.bwh.harvard.edu/pph2/) [40] were used. Locations of SNPs were identified based on
the genome version of Ovis aries Oar_v3.1. The secondary structure of the protein was determined
from the amino acid sequence using CFSSP software (http://www.biogem.org/tool/chou-fasman/) [41].

Table 1. Primer sequences, location, annealing temperatures and amplification fragment sizes.

PCR Primer Sequence (5′–3′) 1 Site 2 AT (◦C) Size (bp)

1 F: TTTTTCTGTGTCTTTTGAATGTCC
R: AAGTAACAACTAATGCTTGGAACA Exon 4 57 397

2 F: GCTCTTTAAGCTGGGTGTGC
R: TTCAGCCTGTTTGAATGACTG Exon 6 55 386

3 F: TGCTAAAAATTCATTTTGACTTCG
R: GGAGGGCATCTCACCTTTTC Exon 7 55 293

4 F: CTGTCGCCAGCTAACTCCTC
R: CCTCCTTTTGAGTTACCACCA Exon 8 55 378

5 F: TGCCTGGTGAATCCTTTTTA
R: TCTCACCATATCCACAGAAAAAT Exons 9–10 53 700

6 F: AGAGCTGGGAATTCAGAAATG
R: TCTTTTCAATCCCACTGCAA Exon 11 53 496

7 F: CTGCTTGGCAGGTGGATT
R: CAGGAGGATGTATTTTATGCCAGT Exon 12 55 392

8 F: TGCCTACCAATGGGAAATGT
R: ATGGGAGGGGTTTGAAAGAT Exon 15 55 383

9 F: CCTGCTTTCTCTTCCTTCTTCC
R: TTTTTGAAGTTTTCATTAACTGTGTT Exon 16 55 389

10 F: CCAGTTTCAATCCATAAATCATCA
R: TGGCAGCATTGTTGCTAACT Exon 17 55 299

11 F: TGAAGCAAAACAAAACAAAACA
R: ACTCTCCTAACCAATGGTGAAA Exon 20 52 974

1 F: forward; R: reverse; 2 AT: annealing temperature.

2.5. LEPR Polymorphism Genotyping

Genomic DNA was extracted from blood samples of 239 ewes from the total ewes of the flock using
standard protocols. Six non-synonymous SNPs were selected for genotyping the whole population:
one in exon 4 (rs411478947), exon 7 (rs596133197), and exon 8 (rs403578195) and three in exon 20
(rs412929474, rs428867159, and rs405459906) (Table 2). Only non-synonymous SNPs were selected
because they produce changes in the translated amino acid residue sequence and are more likely to
affect the structure and function of the encoded protein and so may influence the phenotype of interest.
These SNPs were genotyped by Kompetitive Allele-Specific PCR (KASP) following the manufacturer’s
instructions. Sequences flanking SNPs for the SNPs were submitted for assay design to the genotyping
platform provider (LGC Genomics, Biotools, Spain). For all samples, the KASP assay was carried out
in a 10 µL volume containing 20 ng of genomic DNA, 5 µL of KASP V4.0 2x Master mix standard

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ensembl.org/Ovisaries/Tools/VEP?db=core
http://genetics.bwh.harvard.edu/pph2/
http://www.biogem.org/tool/chou-fasman/
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ROX (LCG Genomics, Beverly, MA, USA) and 0.14 µL of KASP-by-Design assay mix (LGC Genomics).
Reactions were carried out in a CFX96 Bio-Rad thermocycler (Bio-Rad, Madrid, Spain) under the
following conditions: 15 min at 94 ◦C followed by 9 cycles of 94 ◦C for 20 s and 57 ◦C for 1 min
(dropping −0.6 ◦C per cycle to achieve a 55 ◦C annealing temperature), followed by 25 cycles of 94 ◦C
for 20 s and 55 ◦C for 1 min. Following PCR, fluorescence was detected using a single quantification
cycle for 1 s after cooling at 30 ◦C for 2 min.

2.6. Statistical Analysis

2.6.1. SNP Association Studies

The Hardy–Weinberg equilibrium exact test was applied and the observed and expected
heterozygosities and the minor allele frequency (MAF) for each SNP were calculated using Haploview
software v4.2 [42]. Statistical analyses were carried out as a regression of the phenotype values of the
three reproductive seasonality traits on the SNP genotypes by fitting a linear model using the Rcmdr
package of R software (http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/) [43]. The model included
the genotype of the SNPs (S), the age (mature and young) (A), and the interaction of age by genotype of
the SNPs (A × S) as fixed effects and the live weight (LW) and body condition score (BCS) as covariates.
To test differences between genotypes, we estimated the least square means (LSMs) for each pairwise
comparison for the SNP and SNP x age effects. A Bonferroni correction was fitted to take into account
multiple tests. All SNPs were independently analysed with the same statistical model.

2.6.2. Haplotype Association Studies

Blocks of linkage disequilibrium (LD) were evaluated with Haploview software v4.2 using the
4-gamete rule [42]. D’ and r2 within the LEPR were calculated and visualized in Figure 1. SNPs were
phased with PLINK1.9 [44] using the expectation–maximization (E–M) algorithm to assign individual
haplotypes. We considered diplotypes with a posterior probability higher than 0.7. Associations
between the haplotypes and reproductive seasonality traits were performed by fitting a linear model
using the Rcmdr package of R software. The model fit was similar to that used for the SNP association
studies but included the haplotype (H) effect and the interaction of age by haplotype (A × H).
Haplotypes for each individual were codified as 0, 1 or 2, indicating the number of copies of each
haplotype. Only haplotypes with a frequency greater than or equal to 1% were considered. To test
differences between haplotypes, we estimated the LSMs for each pairwise comparison. The Bonferroni
correction was applied to take into account multiple tests.

http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/
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Table 2. Information about the location and amino acid substitution effect of the identified SNPs according to the Variant Effect Predictor and PolyPhen-2 software in the
LEPR gene. Scores for these programs are indicated in brackets. The SNPs are ordered according to their positions in the Oar3.1 genome version (Oar3.1: GenBank acc.
number NC_019458). The amino acid positions are ordered according to their positions in GenBank acc. number ENSOARP00000011154 sequence.

SNP Alias 1 Location Position in
OAR Version 3.1

Nucleotide
Change

Amino Acid
Change

VEP
(SIFT Score) PolyPhen-2 (Score)

rs411478947 snp_ex4 Exon 4 Oar1: g.40787726 C > T Arg62Cys Tolerated (0.05) Possibly damaging
(0.74)

rs159694506 Oar1: g.40787782 T > C Asn80 = 2 - -
rs159694508 Oar1: g.40787821 T > C Ser93 = - -

rs596133197 snp_ex7 Exon 7 Oar1: g.40813963 C > T Thr248Ile Deleterious (0) Probably damaging
(0.98)

rs403578195 snp_ex8 Exon 8 Oar1: g.40818703 C > G Ala284Gly Deleterious (0) Possibly damaging
(0.77)

rs416296450 Intron 9 Oar1: g.40825576 G > A - - -
rs404892216 Intron 10 Oar1: g.40828606 A > G - - -
rs407234698 Exon 12 Oar1: g.40833201 A > G Pro561 = - -
rs421946862 Exon 16 Oar1: g.40840634 C > T Ser791 = - -
rs401262081 Intron 16 Oar1: g.40840703 C > T - - -
rs403654953 Exon 20 Oar1: g.40857538 C > T Gly908 = - -
rs412929474 snp_ex20_1 Oar1: g.40857581 G > A Val923Ile Tolerated (0.5) Benign (0.04)
rs426037269 Oar1: g.40857583 C > T Val923 = - -
rs415715948 Oar1: g.40857634 C > T Ala940 = - -
rs428867159 snp_ex20_2 Oar1: g.40857869 C > T Pro1019Ser Tolerated (0.77) Benign (0.06)
rs405459906 snp_ex20_3 Oar1: g.40858019 A > G Lys1069Glu Tolerated (1) Benign (0)
rs414501727 Oar1: g.40858045 C > T Val1077 = - -
rs427778198 Oar1: g.40858219 G > A Gln1135 = - -

1 Nomenclature used for each SNP in this work. 2 No amino acid change.
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Figure 1. Linkage disequilibrium plot among the six non-conservative SNPs in LEPR using Haploview.
The linkage disequilibrium colour scheme and values correspond with the D′ and r2 parameters,
respectively. Strong LD (D′ = 1, LOD ≥ 2) is indicated in red. Red indicates varying degrees of LD
with lighter shades displaying less than darker shades (D′ < 1, LOD ≥ 2), and white indicates low LD
(D′ < 1, LOD < 2).

3. Results

3.1. Isolation of the Partial Ovine LEPR Gene and Polymorphism Genotyping and Linkage Disequilibrium (LD)

To identify polymorphisms in the LEPR gene, we sequenced twelve exons that have
non-synonymous polymorphisms in the Ensembl Variation database (Table 1) (https://www.ensembl.
org/info/genome/variation/index.html). These exons were located at the beginning, middle and end
regions of the gene. In total, 18 SNPs were detected: 3 and 8 SNPs in exons 4 (rs411478947, rs159694506
and rs159694508) and 20 (rs412929474, rs428867159, rs405459906, rs403654953, rs426037269, rs415715948,
rs414501727 and rs427778198), respectively, and 1 SNP in exons 7 (rs596133197), 8 (rs403578195),
12 (rs407234698) and 16 (rs421946862) and in introns 9 (rs416296450), 10 (rs404892216) and 16
(rs401262081) (Table 2). Six of these SNPs were non-synonymous substitutions and were genotyped in
the whole population, with 2 (snp_ex7 and snp_ex8) and 3 (snp_ex4, snp_ex7 and snp_ex8) of them
predicted as deleterious or possibly/probably damaging by VEP or PolyPhen-2 software, respectively
(Table 2). These SNPs showed low MAFs, ranging between 0.023 (snp_ex7) and 0.065 (snp_ex4)
(Supplementary Table S1).

To determine the extent of LD among these markers, we estimated the parameters D’ and r2

between all pairwise combinations of the six non-synonymous SNPs. The results of the LD analysis
are shown in Figure 1, in which two LD blocks were predicted. Block 1 is composed of SNPs located in
the extracellular domain of the protein (snp_ex4, snp_ex7 and snp_ex8), and Block 2 is composed of
three missense mutations located in the cytoplasmic domain of the receptor in exon 20.

3.2. SNP Association Studies

For the association analyses, we used 239 ewes from which thirty-five ewes (29 adults and 6 young
ewes) did not present anoestrous during the experiment based on TDA trait (TDA = 0). Similarly,

https://www.ensembl.org/info/genome/variation/index.html
https://www.ensembl.org/info/genome/variation/index.html
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seventy-seven (60 adult and 17 young) and nine (7 adult and 2 young) ewes were cycling during all
the experiments based on P4CM and OCM traits, respectively. All SNPs were in Hardy–Weinberg
equilibrium. Only snp_ex8 showed a significant association with OCM (CC vs. GC genotypes,
p = 0.0027). Ewes with the CC genotype showed more oestrous records (+0.12) than heterozygous
ewes (Table 3). Details of type III test and LSMs for the SNP and the SNP x A effects for each SNP are
provided in Supplementary Table S2. For the interaction effect between SNP and age, only the TDA
phenotype differed among genotypes (p < 0.05) in young ewes for snp_ex20_1 after the Bonferroni
correction (see Supplementary Table S2 for further details). Significant difference was found between
the GG genotype and AG genotype (p = 0.04). Indeed, young ewes with the GG genotype had higher
TDA values than heterozygotes. No significant differences were detected between the AA (n = 2)
and AG (n = 14) genotypes in young ewes. It is worth noting that in our population, this SNP showed
a low frequency for the A allele (0.10).

Table 3. Type III test for the significant SNPs and SNP by age (A) effects on the LEPR gene using the
seasonal traits from Rasa Aragonesa ewes. The least square means (LSMs) and standard errors for the
SNP and the SNP x A effects on the LEPR gene are also shown. Only significant SNPs after Bonferroni
correction are shown. Different letters indicate significant differences: a,b: p < 0.05.

SNP Trait p Value SNP A
SNP LSMs

CC GC GG

snp_ex8 OCM 0.003 All 0.54 ± 0.01 a 0.42 ± 0.03 b -

SNP Trait p Value SNP × A A
SNP × A LSMs

AA AG GG

snp_ex20_1 TDA 0.0004 Young 80.6 ± 31.09 a,b 45.6 ± 11.98 a 83.3 ± 6.41 b

3.3. Haplotype Association Studies

Haplotype association studies was performed taking into account the two LD blocks predicted with
Haploview (Figure 1) and a block containing all SNPs (Block 0). In total, 17, 5 and 6 haplotypes were
found for blocks 0, 1 and 2, respectively (Supplementary Table S3). We only considered diplotypes with
a posterior probability higher than 0.7 and haplotype frequency > 0.01. Thus, haplotype analysis was
conducted considering 237/8, 237/4 and 235/4 ewes/haplotypes for blocks 0 (Supplementary Table S4),
1 (Supplementary Table S5) and 2 (Supplementary Table S6), respectively.

The significant association previously found between snp_ex20_1 by age and TDA phenotype was
confirmed by haplotype association studies. In this sense, young ewes with no copies of the h1 (ATG)
haplotype (in bold, snp_ex20_1) in block 2 had higher TDA values than those with 1 copy (Table 4).
Moreover, in block 0, a significant effect was found for the h1 (GCCATG) haplotype containing allele A
of the snp_ex20_1, showing that young ewes with one copy of h1 had more oestrous events than those
without copies (Table 4).

Haplotypes h2 and h8 of block 0 were also associated with OCM considering the whole population.
Ewes with 0 copies of the h2 (GCCGTG) or h8 (GCGATG) haplotypes (in bold, snp_ex8 and snp_ex20_3)
showed more oestrous records than those with 1 copy. Notably, the h8 haplotype has the G allele
(deleterious allele) of snp_ex8. Similarly, the analysis of block 1 showed that haplotype h1 (GCG),
which also contains the G allele of snp_ex8, is associated with OCM. However, ewes with haplotype h2
for block 0 (GCCGTG) and block 2 (GTG) carry the G allele of snp_ex20_3, which was associated with
less oestrous records (OCM), although this SNP did not show a significant p-value after Bonferroni
correction in SNP association studies.
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Table 4. Type III test for the haplotype and haplotype by age (A) effects for blocks 0, 1 and 2 on the
LEPR gene using the seasonal phenotypic data from Rasa Aragonesa ewes. The least square means
(LSMs) and standard errors for the haplotype effect on the LEPR gene are also shown. Only significant
haplotypes after Bonferroni correction are shown. Different letters indicate significant differences:
a,b: p < 0.05.

Haplotype
Block 1 Trait Haplotype Frequency p Value

Haplotype A
Haplotype LSMs 2

0 Copies 1 Copy 2 Copies

Block 0 OCM h2
(GCCGTG) 0.07 0.002 All 0.53 ±

0.01 a
0.44 ±
0.03 b -

OCM h8
(GCGATG) 0.01 0.004 All 0.52 ±

0.01 a
0.26 ±
0.10 b -

Block 1 OCM h1(GCG) 0.05 0.003 All 0.55 ±
0.01 a

0.42 ±
0.03 b -

Block 2 OCM h2 (GTG) 0.07 0.002 All 0.54 ±
0.01 a

0.44 ±
0.03 b -

Haplotype
Block 1 Trait Haplotype Frequency

p Value
Haplotype
× A

A
Haplotype ×A LSMs 2

0 Copies 1 Copy 2 Copies

Block 0 OCM h1(GCCATG) 0.09 0.004 Young 0.46 ±
0.02 a

0.66 ±
0.05 b

0.55 ±
0.14 a,b

Block 2 TDA h1 (ATG) 0.10 0.0003 Young 83.9 ±
6.38 a

46.3 ±
11.97 b

81.4 ±
31.09 a,b

1 Block 0: snp_ex4–snp_ex7–snp_ex8–snp_ex20_1–snp_ex20_2–snp_ex20_3; Block 1: snp_ex4–snp_ex7–snp_ex8;
and Block2: snp_ex20_1–snp_ex20_2–snp_ex20_3. 2 0 copy: LSMs and SE for 0 copies of the haplotype; 1 copy:
LSMs and SE for 1 copy of the haplotype; and 2 copies: LSMs and SE for 2 copies of the haplotype.

4. Discussion

We detected 18 SNPs in the LEPR gene using 33 ewes with extreme values of TDA and OCM;
six were non-synonymous substitutions, that were validated in 239 ewes. SIFT values varying
from 0 to 1 were predicted for these SNPs by VEP software. SIFT scores lower than 0.05 suggest a
potential intolerable amino acid substitution and a potential influence on protein function. In exon 4,
a non-synonymous polymorphism (snp_ex4) promoting a change of arginine to cysteine at position 62
(according to their positions in GenBank acc. number ENSOARP00000011154) was detected, with this
substitution predicted as tolerated but with a low SIFT value (0.05) and possibly damaging by VEP
and PolyPhen-2 software, respectively (Table 2). Furthermore, arginine is a positively charged amino
acid, whereas cysteine is polar in nature. This SNP was previously described by Haldar et al. [45]
in Davisdale ewes. Of particular interest were two non-synonymous SNPs located in exons 7 and 8
and predicted as deleterious (SIFT = 0) by VEP analysis. The first SNP in exon 7 (snp_ex7) produces
an amino acid change from threonine (polar) to isoleucine (non-polar) at position 248, whereas the
second SNP in exon 8 (snp_ex8) produces a change from alanine (non-polar) to glycine (non-polar)
at position 284. These three SNPs found in exons 4, 7 and 8 are located in the extracellular domain of
the protein, where different amino acid substitutions have been associated with obesity in humans [46].
The three SNPs found in exon 20 were located in the cytoplasmic domain of the receptor. Two of
them (snp_ex20_2 and snp_ex20_3) were previously described by Haldar et al. [45]. None of the three
non-synonymous substitutions found in exon 20 were predicted as deleterious, being considered
tolerated or benign, with SIFT values ranging from 0.5 (snp_ex20_1) to 1 (snp_ex20_3).

We also studied whether these mutations alter the secondary structure of the protein. In fact,
four of these mutations alter the predicted secondary structure of the mature protein. Snp_ex4
promotes a putative loss of two turns, which increases the length of the random coil structure in two
amino acids. Snp_ex7 and snp_ex8 putatively change one alpha helix motif by a β-pleated sheet and a
turn motif, respectively. Finally, snp_ex20_3 should promote a change of a random coil by an alpha
helix motif.
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SNP association analysis showed that the non-conservative SNPs found in exons 4 and 7 were
not associated with reproductive seasonality traits. These SNPs were predicted as tolerated (but with
a low SIFT value) and deleterious, respectively, but they showed low MAF values (0.06 and 0.02 for
snp_ex4 and snp_ex7, respectively) (Supplementary Table S1). Only one homozygous and no animals
were found for the predicted tolerated and deleterious alleles (T alleles for both SNPs) of snp_ex4 and
snp_ex7, respectively. However, Haldar et al. [45] found a strong association between snp_ex4 and
puberty phenotypes (p < 0.001) but found a higher frequency for the T allele (0.47). These researchers
reported that ewe lambs homozygous for the T allele in the LEPR gene were less likely to attain puberty
at 1 year of age than those that did not carry the mutation in Davisdale sheep. Therefore, statistically
significant effects were found concerning OCM and the deleterious SNP mutation in exon 8, showing a
low MAF (0.06) and no homozygous animals for the putative deleterious allele. Heterozygous animals
for this SNP showed fewer oestrous records (OCM trait) than homozygous animals. As OCM indicates
behavioural signs of oestrous, it could be inferred that natural selection against homozygous animals
for the deleterious allele has led to a low frequency of this allele. Haplotype association analysis
confirmed these results. In fact, ewes whose haplotype contains the G allele (deleterious mutation)
for snp_ex8 showed less oestrous events.

The interaction between snp_ex20_1 and age affected TDA in young ewes. However, the opposite
effect was found in adult ewes (Supplementary Table S2). This finding could indicate that this mutation
is not responsible for the observed effect but could be in LD with some causative mutation. In this sense,
snp_ex20_1 was in LD with snp_ex20_2 (r2 = 0.51) and snp_ex20_3 (r2 = 0.42) in the predicted haplotype
block 2 (Figure 1). Moreover, ewes with haplotype h2 for block 0 (GCCGTG) and block 2 (GTG),
carrying the G allele of snp_ex20_3, had significantly lower OCM values after Bonferroni correction,
indicating the putative involvement of this SNP of the LEPR gene on the seasonal phenotypes. The SNPs
at exon 20 segregate independently from those located in the extracellular domain, and different effects
in two different regions of the LEPR protein were found in this study. One of them, snp_ex8, is located
in the CRHI/immunoglobulin-like domain of the extracellular domain of the protein, where different
amino acid substitutions have been associated with obesity and disrupted pubertal development in
humans [46]. The second mutation, snp_ex20_3, was not associated with puberty traits in the work of
Haldar et al. [45]. This mutation was not predicted as deleterious and was located in the cytoplasmic
domain close to a conserved region (called box 3) around position 1079 in the amino acid sequence.
In humans, multiple splice variants of LEPR mRNA have been identified encoding an identical ligand
binding domain but differing in the length of the cytosolic domain [47,48]. The LEPR isoforms A, B,
C, and D have the same JAK binding motif encoded by exon 17. However, only the LEPR-B isoform
contains the Box 3 motif encoded by exon 20 for STAT activation [47,49,50]. This isoform is expressed
ubiquitously and constitutes up to 35% of the LEPR transcripts in the hypothalamus [51]. Only the
full-length LEPR isoform (LEPR-B isoform) is able to fully transduce an activating JAK/STAT signal
into the cell. Remarkably, the intracellular domain of the B isoform contains three tyrosine residues
(Y986, Y1079 and Y1141) that activate the intracellular STAT signal transduction pathway. Y1079 plays
a dominant role in activating STAT5, and Y1141 activates STAT3 [46]. Then, snp_ex20_3 (Lys1069Glu)
could modify the STAT5 binding motif and disrupt the JAK/STAT signalling pathway. However,
in Y1138S LEPR-B mutant females in mice, this mutation induced impaired STAT3 signalling with
residual STAT5 function, but it did not cause infertility [52]. In livestock species, Almeida et al. [53]
investigated the SNP (T945M) polymorphism in exon 20 of the LEPR gene in Angus, Brangus and
Charolais cattle and found no associations with reproductive characteristics. The authors reported that
blood leptin levels were influenced by this LEPR SNP in late pregnancy but not during lactation. It is
important to note that associations between a mutation and the observed phenotypes are not direct
evidence that the mutations caused the observed changes in phenotype. The observed relationship
could indicate that the SNP is in linkage disequilibrium with the true causative mutation [36]. In our
study, we used a small sample size of ewes (n = 33) with extreme values for reproductive seasonality
traits to look for polymorphisms that could be segregating in this population. This design could
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increase the power to detect polymorphic SNPs associated with the trait but minimized the probability
of detecting other polymorphic SNPs. Furthermore, we did not sequence the complete coding region
or regulatory regions, such as the promoter or 5′ and 3′ UTRs.

Although the relationships between individuals in the sample were unknown and then population
stratification cannot be checked, the results with the SNP located in exon 8 are very consistent.
This consistency is justified by the significant association with the OMC trait (in SNP and haplotype
association analysis), the in silico prediction of the functional and structural consequences of this
non-synonymous SNP (predicted as deleterious and affecting the secondary structure of the protein)
and the location in the extracellular domain of the protein, where different amino acid substitutions
have been associated with phenotype effects.

In summary, these results confirmed for the first time the involvement of the LEPR gene in
reproductive seasonality. In this sense, several studies suggest that LEPR influences GnRH neuron
activity and GnRH secretion by crosstalk with kisspeptin [54]. Kisspeptin cells are determinants of
GnRH/LH secretion in the different seasons and are responsible for activation of reproductive function.
Clarke et al. [55] reported that kisspeptin expression in the arcuate nucleus is markedly reduced
during the nonbreeding period and increased in ewes exposed to a short photoperiod and in the
follicular phase of the cycle in the breeding season, suggesting the involvement of kisspeptin neurons
in this activation. Kisspeptin neurons regulate GnRH neurons and transmit sex-steroid feedback
to the reproductive axis (the trigger of increased LH secretion and gonadal activation), whereas a
negative feedback of oestrogen on GnRH secretion is characteristic of the nonbreeding season [55].
This finding is comparable to that reported by other authors [56,57] about pubertal development events.
In knockout mice and individuals with impaired LEPR function, disruption of pubertal development
was found, as in the case of Davisdale ewes [45].

5. Conclusions

In conclusion, one SNP predicted as deleterious located in the extracellular domain of the LEPR
gene (snp_ex8) was strongly associated with the oestrous cycling months in Rasa Aragonesa sheep,
confirming for the first time the role of the LEPR gene in reproductive seasonality in ruminants.
Furthermore, another non-linked SNP in exon 20 was associated with this trait, as shown in the
haplotype association analysis. This SNP could be in linkage disequilibrium with other SNPs not
detected in this study. The G alleles of snp_ex8 and snp_ex20_3 are associated with higher OCM
values, which indicate behavioural signs of oestrous in the Rasa Aragonesa breed. Genetic selection
programs can be enhanced by implementing the genotyping of reproducers for these alleles related to
reproductive seasonality, which might increase the productivity of meat sheep.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/12/2448/s1,
Table S1: Genotypic and allelic frequencies of the identified SNPs, Table S2: Type III test for the body condition (BC),
live weight (LW), age (A), SNP, and SNP× age effects for the LEPR polymorphisms using the seasonality phenotype
data from Rasa Aragonesa ewes. The least square means (LSMs) and standard errors of the LEPR polymorphisms
in the seasonality phenotype data in Rasa Aragonesa ewes are also shown, Table S3: Haplotypes combination
and frequency for block 0 (rs411478947-rs596133197-rs403578195-rs412929474-rs428867159-rs405459906), block 1
(rs411478947-rs596133197-rs403578195) and 2 (rs412929474-rs428867159-rs405459906). Only haplotypes with a
frequency higher than 1% are shown, Table S4: Type III test for the body condition (BC), live weight (LW), age (A),
haplotype (H), and haplotype × age (H × A) effects for the Block 0 haplotype using the seasonality phenotype
data from Rasa Aragonesa ewes. The least square means (LSMs) and standard errors of the LEPR polymorphisms
in the seasonality phenotype data in Rasa Aragonesa ewes are also shown, Table S5: Type III test for the body
condition (BC), live weight (LW), age (A), haplotype (H), and haplotype × age (H × A) effects for the Block 1
haplotype using the seasonality phenotype data from Rasa Aragonesa ewes. The least square means and standard
errors of the LEPR polymorphisms in the seasonality phenotype data in Rasa Aragonesa ewes are also shown,
Table S6: Type III test for the body condition (BC), live weight (LW), age (A), haplotype (H), and haplotype ×
age (H × A) effects for the Block 2 haplotype using the seasonality phenotype data from Rasa Aragonesa ewes.
The least square means and standard errors of the LEPR polymorphisms in the seasonality phenotype data in Rasa
Aragonesa ewes are also shown.
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