6 research outputs found

    First ampelometric study of autochthonous grapevines in Algeria: Germplasm collection of Mascara

    Get PDF
    Ampelometric studies on 26 varieties of Vitis vinifera L. belonging to the germplasm existing in the collection of Tighennif (Mascara), the most important conservatory of local grapevine varieties existing in Algeria were carried out to characterize this gene pool, the phyllometric measurement method proposed by MARTÍNEZ and GRENAN was applied to establish a cultivar specific adult leaf. Statistical analysis was performed to identify the most discriminating parameters, namely, size of angles and depth of the lateral sinuses in comparison to the lengths of the veins, especially those on the left side of the leaf. Thus, cultivars with common features such as 'Bezoul el Khadem' and 'Ahmar de Mechtras III', 'Toutrissine' and 'Aberkane' and 'Amellal' and 'Torki' were clustered together. For seven varieties the average leaf has been reconstructed.

    Magnetic nanocarriers for the specific delivery of siRNA: Contribution of breast cancer cells active targeting for down-regulation efficiency

    No full text
    National audienceThe association between superparamagnetic iron oxide nanoparticles (SPION), carrying small interfering RNA (siRNA) as therapeutic agents and humanized anti- human epidermal growth factor receptor-2 (HER2) single-chain antibody fragments (scFv) for the active delivery into HER2-overexpressing cells appears as an interesting approach for patients with HER2-overexpressing advanced breast cancer. The obtained Targeted Stealth Magnetic siRNA Nanovectors (TS-MSN) are formulated by combining: (i) the synthesis protocol of Targeted Stealth Fluorescent Particles (T-SFP) which form the core of TS-MSN and (ii) the formulation protocol allowing the loading of T-SFP with polyplexes (siRNA and cationic polymers). TS-MSN have suitable physico-chemical characteristics for intravenous administration and protect siRNA against enzymatic degradation up to 24 h. The presence of HER2-targeting scFv on TS-MSN allowed an improved internalization (3-4 times more compared to untargeted S-MSN) in HER2-overexpressing breast cancer cells (BT-474). Furthermore, anti-survivin siRNA delivered by TS-MSN in HER2-negative breast-cancer control cells (MDA-MB-231) allowed significant down-regulation of the targeted anti-apoptotic protein of about 70%. This protein down-regulation increased in HER2 + cells to about 90% (compared to 70% with S-MSN in both cell lines) indicating the contribution of the HER2-active targeting. In conclusion, TS-MSN are promising nanocarriers for the specific and efficient delivery of siRNA to HER2-overexpressing breast cancer cells

    Magnetic nanocarriers for the specific delivery of siRNA: Contribution of breast cancer cells active targeting for down-regulation efficiency

    No full text
    Section spéciale du Meeting SFNano 2018 : Nanomedicine- from particle design to applications (2018/12/03_2018/12/05, Montpellier, FRA), edited by Nathalie Mignet, Chantal Pichon et Marie-Pierre RolsInternational audienceThe association between superparamagnetic iron oxide nanoparticles (SPION), carrying small interfering RNA (siRNA) as therapeutic agents and humanized anti- human epidermal growth factor receptor-2 (HER2) single-chain antibody fragments (scFv) for the active delivery into HER2-overexpressing cells appears as an interesting approach for patients with HER2-overexpressing advanced breast cancer. The obtained Targeted Stealth Magnetic siRNA Nanovectors (TS-MSN) are formulated by combining: (i) the synthesis protocol of Targeted Stealth Fluorescent Particles (T-SFP) which form the core of TS-MSN and (ii) the formulation protocol allowing the loading of T-SFP with polyplexes (siRNA and cationic polymers). TS-MSN have suitable physico-chemical characteristics for intravenous administration and protect siRNA against enzymatic degradation up to 24 h. The presence of HER2-targeting scFv on TS-MSN allowed an improved internalization (3-4 times more compared to untargeted S-MSN) in HER2-overexpressing breast cancer cells (BT-474). Furthermore, anti-survivin siRNA delivered by TS-MSN in HER2-negative breast-cancer control cells (MDA-MB-231) allowed significant down-regulation of the targeted anti-apoptotic protein of about 70%. This protein down-regulation increased in HER2 + cells to about 90% (compared to 70% with S-MSN in both cell lines) indicating the contribution of the HER2-active targeting. In conclusion, TS-MSN are promising nanocarriers for the specific and efficient delivery of siRNA to HER2-overexpressing breast cancer cells

    Adcitmer ® , a new CD56‐targeting monomethyl auristatin E‐conjugated antibody, is a potential therapeutic approach in Merkel cell carcinoma

    No full text
    International audienceBackground: Merkel cell carcinoma (MCC) is an aggressive skin cancer, whose tumour cells often express CD56. While immune checkpoint inhibitors constitute a major advance for treating patients with MCC with advanced disease, new therapeutic options are still urgently required.Objectives: To produce and evaluate the therapeutic performance of a new antibody-drug conjugate (Adcitmer® ) targeting CD56 in preclinical models of MCC.Methods: CD56 expression was evaluated in a MCC cohort (immunohistochemistry on a tissue microarray of 90 tumour samples) and MCC cell lines. Interaction of an unconjugated CD56-targeting antibody with CD56+ MCC cell lines was investigated by immunohistochemistry and imaging flow cytometry. Adcitmer® product was generated by the bioconjugation of CD56-targeting antibody to a cytotoxic drug (monomethyl auristatin E) using the McSAF Inside® bioconjugation process. The chemical properties and homogeneity of Adcitmer® were characterized by hydrophobic interaction chromatography. Adcitmer® cytotoxicity was evaluated in vitro and in an MCC xenograft mice model.Results: Similar to previous reports, CD56 was expressed by 66% of MCC tumours in our cohort, confirming its relevance as a therapeutic target. Specific binding and internalization of the unconjugated CD56-targeting antibody was validated in MCC cell lines. The high homogeneity of the newly generated Adcitmer® was confirmed by hydrophobic interaction chromatography. The CD56-mediated cytotoxicity of Adcitmer® was demonstrated in vitro in MCC cell lines. Moreover, Adcitmer® significantly reduced tumour growth in a MCC mouse model.Conclusions: Our study suggests that Adcitmer® should be further assessed as a therapeutic option in patients with MCC, as an alternative therapy or combined with immune checkpoint inhibitors

    Antibody Fragments Humanization: Beginning with the End in Mind

    No full text
    International audienceMolecular engineering has made possible to reformat monoclonal antibodies into smaller antigen-binding structures like scFvs, diabodies, Fabs with new potential in vivo applications because they do not induce Fc-mediated functions. However, most of these molecules are from rodent origin. As a consequence, they are immunogenic and approval for administration to humans requires prior humanization. Today, there is no well-identified strategy to create recombinant humanized antibody V-domains that preserve the antigen-binding characteristics of the parental antibody associated with high stability and solubility. Here, we propose a strategy that consists in grafting CDRs onto properly chosen human antibody frameworks in order to reduce immunogenicity. A flowchart indicates the way to proceed in order to introduce an internal affinity purification tag while structural refinements are proposed to maintain antigen-binding characteristics. The best humanized candidates are identified through selection steps including in silico analysis, research scale production followed by early functional evaluation, purification assays, aggregation, and stability assessment
    corecore