27 research outputs found

    The ‘magic of the mall’ revisited: Malls and the embodied politics of life

    No full text
    This article reviews recent literature on shopping malls that reaffirms their importance for human geography. Taking Goss’s seminal work on the ‘magic of the mall’ as a starting point, we trace how recent works attuned to emotion and affect have updated and inspired a re-conceptualization of this potential ‘magic’. Synthesizing the linkages between consumer architecture with spatial politics and emotional and affective sensibilities in those spaces, the article seeks to help set the agenda for further research in this field by emphasizing how social difference infuses the retail atmosphere and the way it reveals the workings of geopolitics

    Advanced Light Microscopy Core Facilities: Balancing Service, Science and Career

    Get PDF
    Core Facilities (CF) for advanced light microscopy (ALM) have become indispensable support units for research in the life sciences. Their organizational structure and technical characteristics are quite diverse, although the tasks they pursue and the services they offer are similar. Therefore, throughout Europe, scientists from ALM-CFs are forming networks to promote interactions and discuss best practice models. Here, we present recommendations for ALM-CF operations elaborated by the workgroups of the German network of ALM-CFs, German Bio-Imaging (GerBI). We address technical aspects of CF planning and instrument maintainance, give advice on the organization and management of an ALM-CF, propose a scheme for the training of CF users, and provide an overview of current resources for image processing and analysis. Further, we elaborate on the new challenges and opportunities for professional development and careers created by CFs. While some information specifically refers to the German academic system, most of the content of this article is of general interest for CFs in the life sciences. (C) 2016 THE AUTHORS MICROSCOPY RESEARCH AND TECHNIQUE PUBLISHED BY WILEY PERIODICALS, INC

    Chatting Second Messengers: PIP3 and cAMP

    No full text
    3’-5’-cyclic adenosine monophosphate (cAMP) and phosphatidylinositol 3,4,5 trisphosphate (PIP3) are pleiotropic second messengers generated in response to activation of G protein-coupled receptors (GPCRs) by a wide array of hormones and neurotransmitters. Although these small molecules engage distinct and seem-ingly unrelated downstream signal transducers, a growing body of evidence points to a strict cooperation of cAMP and PIP3 cascades in the control of cardiomyocyte functions. Dynamic macromolecular complexes of cAMP and PIP3 molecular switches assemble into spatially and temporally restricted microdomains. Deci-phering how this compartmentalization complexes form and affect the interactions between the two signaling systems is of crucial importance, since both pathways are severely deregulated in major cardiac diseases, such as heart failure. This chapter summarizes recently described mechanisms governing the bidirectional crosstalk between cAMP and PIP3 signaling pathways in the pathophysiological control of cardiovascular function. In particular, we will describe how membrane-located PIP3 affects both initiation and termination of cAMP signaling as well as the negative feedback loop whereby the small and diffusible intracellular messen-ger, cAMP, influences PIP3 productio

    Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies

    No full text
    Pathogenesis induced by SARS-CoV-2 is thought to result from both an inflammation-dominated cytokine response and virus-induced cell perturbation causing cell death. Here, we employ an integrative imaging analysis to determine morphological organelle alterations induced in SARS-CoV-2-infected human lung epithelial cells. We report 3D electron microscopy reconstructions of whole cells and subcellular compartments, revealing extensive fragmentation of the Golgi apparatus, alteration of the mitochondrial network and recruitment of peroxisomes to viral replication organelles formed by clusters of double-membrane vesicles (DMVs). These are tethered to the endoplasmic reticulum, providing insights into DMV biogenesis and spatial coordination of SARS-CoV-2 replication. Live cell imaging combined with an infection sensor reveals profound remodeling of cytoskeleton elements. Pharmacological inhibition of their dynamics suppresses SARS-CoV-2 replication. We thus report insights into virus-induced cytopathic effects and provide alongside a comprehensive publicly available repository of 3D datasets of SARS-CoV-2-infected cells for download and smooth online visualization. Cortese et al. use integrative imaging techniques to generate a publicly available repository of morphological alterations induced by SARS-CoV-2 in lung cells. Accumulation of ER-derived double-membrane vesicles, the viral replication organelle, occurs concomitantly with cytoskeleton remodeling and Golgi fragmentation. Pharmacological alteration of cytoskeleton dynamics restricts viral replication and spread

    Regulatory myeloid cells paralyze T cells through cell-cell transfer of the metabolite methylglyoxal.

    No full text
    Regulatory myeloid immune cells, such as myeloid-derived suppressor cells (MDSCs), populate inflamed or cancerous tissue and block immune cell effector functions. The lack of mechanistic insight into MDSC suppressive activity and a marker for their identification has hampered attempts to overcome T cell inhibition and unleash anti-cancer immunity. Here, we report that human MDSCs were characterized by strongly reduced metabolism and conferred this compromised metabolic state to CD8(+) T cells, thereby paralyzing their effector functions. We identified accumulation of the dicarbonyl radical methylglyoxal, generated by semicarbazide-sensitive amine oxidase, to cause the metabolic phenotype of MDSCs and MDSC-mediated paralysis of CD8(+) T cells. In a murine cancer model, neutralization of dicarbonyl activity overcame MDSC-mediated T cell suppression and, together with checkpoint inhibition, improved the efficacy of cancer immune therapy. Our results identify the dicarbonyl methylglyoxal as a marker metabolite for MDSCs that mediates T cell paralysis and can serve as a target to improve cancer immune therapy.Myeloid-derived suppressor cells (MDSCs) residing within tumors can impede immune responses. Knolle and colleagues show that MDSCs poison immune cells by producing methylglyoxal, which functionally alters their cellular metabolism and hence their effector responses

    Prevalence of SARS-CoV-2 Infection in Children and Their Parents in Southwest Germany

    No full text
    Importance: School and daycare closures were enforced as measures to confine the novel coronavirus disease 2019 (COVID-19) pandemic, based on the assumption that young children may play a key role in severe acute respiratory coronavirus 2 (SARS-CoV-2) spread. Given the grave consequences of contact restrictions for children, a better understanding of their contribution to the COVID-19 pandemic is of great importance. Objective: To describe the rate of SARS-CoV-2 infections and the seroprevalence of SARS-CoV-2 antibodies in children aged 1 to 10 years, compared with a corresponding parent of each child, in a population-based sample. Design, Setting, and Participants: This large-scale, multicenter, cross-sectional investigation (the COVID-19 BaWĂŒ study) enrolled children aged 1 to 10 years and a corresponding parent between April 22 and May 15, 2020, in southwest Germany. Exposures: Potential exposure to SARS-CoV-2. Main Outcomes and Measures: The main outcomes were infection and seroprevalence of SARS-CoV-2. Participants were tested for SARS-CoV-2 RNA from nasopharyngeal swabs by reverse transcription-polymerase chain reaction and SARS-CoV-2 specific IgG antibodies in serum by enzyme-linked immunosorbent assays and immunofluorescence tests. Discordant results were clarified by electrochemiluminescence immunoassays, a second enzyme-linked immunosorbent assay, or an in-house Luminex-based assay. Results: This study included 4964 participants: 2482 children (median age, 6 [range, 1-10] years; 1265 boys [51.0%]) and 2482 parents (median age, 40 [range, 23-66] years; 615 men [24.8%]). Two participants (0.04%) tested positive for SARS-CoV-2 RNA. The estimated SARS-CoV-2 seroprevalence was low in parents (1.8% [95% CI, 1.2-2.4%]) and 3-fold lower in children (0.6% [95% CI, 0.3-1.0%]). Among 56 families with at least 1 child or parent with seropositivity, the combination of a parent with seropositivity and a corresponding child with seronegativity was 4.3 (95% CI, 1.19-15.52) times higher than the combination of a parent who was seronegative and a corresponding child with seropositivity. We observed virus-neutralizing activity for 66 of 70 IgG-positive serum samples (94.3%). Conclusions and Relevance: In this cross-sectional study, the spread of SARS-CoV-2 infection during a period of lockdown in southwest Germany was particularly low in children aged 1 to 10 years. Accordingly, it is unlikely that children have boosted the pandemic. This SARS-CoV-2 prevalence study, which appears to be the largest focusing on children, is instructive for how ad hoc mass testing provides the basis for rational political decision-making in a pandemic
    corecore