167 research outputs found
Ultrasound Echo is Related to Stress and Strain in Tendon
The mechanical behavior of tendons has been well studied in vitro. A noninvasive method to acquire mechanical data would be highly beneficial. Elastography has been a promising method of gathering in vivo tissue mechanical behavior, but it has inherent limitations. This study presents acoustoelasticity as an alternative ultrasound-based method of measuring tendon stress and strain by reporting a relationship between ultrasonic echo intensity (B-mode ultrasound image brightness) and mechanical behavior of tendon in vitro. Porcine digital flexor tendons were cyclically loaded in a mechanical testing system while an ultrasonic echo response was recorded. We report that echo intensity closely follows the applied cyclic strain pattern in time with higher strain protocols resulting in larger echo intensity changes. We also report that echo intensity is related nonlinearly to stress and nearly linearly to strain. This indicates that ultrasonic echo intensity is related to the mechanical behavior in a loaded tissue by an acoustoelastic response, as previously described in homogeneous, nearly incompressible materials. Acoustoelasticity is therefore able to relate strain-dependent stiffness and stress to the reflected echo, even in the processed B-mode signals reflected from viscoelastic and inhomogeneous material such as tendon, and is a promising metric to acquire in vivo mechanical data noninvasively
Evaluation of global load sharing and shear-lag models to describe mechanical behavior in partially lacerated tendons
The mechanical effect of a partial thickness tear or laceration of a tendon is analytically modeled under various assumptions and results are compared with previous experimental data from porcine flexor tendons. Among several fibril-level models considered, a shear-lag model that incorporates fibril–matrix interaction and a fibril–fibril interaction defined by the contact area of the interposed matrix best matched published data for tendons with shallow cuts (less than 50% of the cross-sectional area). Application of this model to the case of many disrupted fibrils is based on linear superposition and is most successful when more fibrils are incorporated into the model. An equally distributed load sharing model for the fraction of remaining intact fibrils was inadequate in that it overestimates the strength for a cut less than half of the tendon's cross-sectional area. In a broader sense, results imply that shear-lag contributes significantly to the general mechanical behavior of tendons when axial loads are nonuniformly distributed over a cross section, although the predominant hierarchical level and microstructural mediators for this behavior require further inquiry.Peer ReviewedPostprint (published version
Post-yield Relaxation Behavior of Bovine Cancellous Bone
Relaxation studies were conducted on specimens of bovine cancellous bone at post-yield strains. Stress and strain were measured for 1000 s and the relaxation modulus was determined. Fifteen cylindrical, cancellous bone specimens were removed from one bovine femur in the anterior–posterior direction. The relaxation modulus was found to be a function of strain. Therefore cancellous bone is non-linearly viscoelastic/viscoplastic in the plastic region. A power law regression was fit to the relaxation modulus data. The multiplicative constant was found to be statistically related through a power law relationship to both strain (p \u3c 0.0005) and apparent density (p \u3c 0.0005) while the power coefficient was found to be related through a power law relationship, E(t, ε)= A(ε)t-n(ε), to strain (p \u3c 0.0005), but not apparent density
Quantification of Collagen Organization Using Fractal Dimensions and Fourier Transforms
Collagen fibers and fibrils that comprise tendons and ligaments are disrupted or damaged during injury. Fibrillogenesis during healing produces a matrix that is initially quite disorganized, but remodels over time to resemble, but not replicate, the original roughly parallel microstructure. Quantification of these changes is traditionally a laborious and subjective task. In this work we applied two automated techniques, fast Fourier transformation (FFT) and fractal dimension analysis (FA) to quantify the organization of collagen fibers or fibrils. Using multi-photon images of collagen fibers obtained from rat ligament we showed that for healing ligaments, FA differentiates more clearly between the different time-points during healing. Using scanning electron microscopy images of overstretched porcine flexor tendon, we showed that combining FFT and FA measures distinguishes the damaged and undamaged groups more clearly than either method separately
Viscoelastic Materials
Understanding viscoelasticity is pertinent to design applications as diverse as earplugs, gaskets, computer disks, satellite stability, medical diagnosis, injury prevention, vibration abatement, tire performance, sports, spacecraft explosions, and music. This book fits a one-semester graduate course on the properties, analysis, and uses of viscoelastic materials. Those familiar with the author's precursor book, Viscoelastic Solids, will see that this book contains many updates and expanded coverage of the materials science, causes of viscoelastic behavior, properties of materials of biological origin, and applications of viscoelastic materials. The theoretical presentation includes both transient and dynamic aspects, with emphasis on linear viscoelasticity to develop physical insight. Methods for the solution of stress analysis problems are developed and illustrated. Experimental methods for characterization of viscoelastic materials are explored in detail. Viscoelastic phenomena are described for a wide variety of materials, including viscoelastic composite materials. Applications of viscoelasticity and viscoelastic materials are illustrated with case studies.</jats:p
Giant enhancement in effective piezoelectric sensitivity by pyroelectric coupling
We report stable two-layer composites that exhibit large enhancement of effective piezoelectric sensitivity to more than 20000 pC/N in the presence of a thermal gradient. They are based on coupled fields in the non-equilibrium presence of energy flux that is modulated by force. Thermal flux is modulated by a granular contact layer so that electric polarization of pyroelectric origin contributes to stress-generated electric polarization. Effective piezoelectric sensitivity is enhanced by at least two orders of magnitude and is higher than that of known commercial and research materials. The result illustrates the potential of relaxing the usual assumption of equilibrium in the presence of a coupled field to attain extremely high effective properties
Stable singular or negative stiffness systems in the presence of energy flux
We report stable systems which exhibit quasistatic stiffness that can be negative or tend to infinity without external constraint. They are based on coupled fields in the non-equilibrium presence of energy flux that is modulated by force. They evade thermodynamic restrictions by relaxing a restrictive assumption: equilibrium. Negative values of physical properties, including compressibility and heat capacity, are considered forbidden in classical thermodynamics; such analyses provide bounds on the stiffness and other properties of multiphase materials. Stable negative and singular stiffness is demonstrated experimentally in a piezoelectric system and in a thermoelastic granular material. Coupled fields occur naturally under a wide range of conditions and form the basis for many forms of technology including sensors, actuators, and electric coolers. Because all materials exhibit at least one coupled field effect, the concept is broadly general and is applicable to attaining extreme values of any physical property e.g. stiffness, permittivity, piezoelectricity
- …
