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Evaluation of Global Load
Sharing and Shear-Lag Models
to Describe Mechanical Behavior
in Partially Lacerated Tendons
The mechanical effect of a partial thickness tear or laceration of a tendon is analytically
modeled under various assumptions and results are compared with previous experimental
data from porcine flexor tendons. Among several fibril-level models considered, a shear-
lag model that incorporates fibril–matrix interaction and a fibril–fibril interaction defined
by the contact area of the interposed matrix best matched published data for tendons with
shallow cuts (less than 50% of the cross-sectional area). Application of this model to the
case of many disrupted fibrils is based on linear superposition and is most successful
when more fibrils are incorporated into the model. An equally distributed load sharing
model for the fraction of remaining intact fibrils was inadequate in that it overestimates
the strength for a cut less than half of the tendon’s cross-sectional area. In a broader
sense, results imply that shear-lag contributes significantly to the general mechanical
behavior of tendons when axial loads are nonuniformly distributed over a cross section,
although the predominant hierarchical level and microstructural mediators for this
behavior require further inquiry. [DOI: 10.1115/1.4027714]
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1 Introduction

When tears or lacerations occur, tendons exhibit diminished
mechanical properties compared to normal; both ultimate load
[1–6] and stiffness [3,4] are decreased, resulting in a lower load
bearing capacity. From a microstructural perspective, the dimin-
ished number of intact fibrils in a partially torn or lacerated tendon
must carry the entire physiologic load. When a critical tear size is
reached, continued loading of the tissue results in continued tear-
ing and potential failure. Surgical intervention, rehabilitation, or
rest becomes necessary to heal or reconstruct damaged fibrils and
thereby avoid further damage to those remaining.

A common guideline for surgical intervention is that a tear of
more than 50% of the initial cross-sectional area (CSA) should be

considered for repair [7–12]. This “50% rule” was originally
based upon clinical outcomes in hand surgery, but has also been
used for other tendon injuries such as rotator cuff tears [13]. Few
studies have rigorously investigated the mechanics of partial tears
in flexor tendons, and those studies report conflicting results for
the 50% rule. These studies offer differing surgical criteria for
digital flexor tendons based primarily on ultimate strength
[2–6,14,15], without considering remaining tissue behavior under
physiologic loads.

A study aimed at understanding mechanical compromise in
porcine flexor tendons with partial thickness defects was com-
pleted by Kondratko et al. [16] by performing cyclic tests before
and after transversely lacerating the tendons’ midsubstance. Mean
stress in the remaining tendon tissue was investigated at 4% strain
following a laceration of approximately 10%, 20%, 50%, or 65%
of the CSA. Mean stress decreased rapidly with smaller cuts but
then remained nearly constant for lacerations between 20% and
50% of the CSA. Stress values were compared to a simple
mechanical prediction in which the reduced stress at a given strain
is proportional to the reduced cross-sectional area [17]. This
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model poorly fit experimental data, oversimplifying the observed
experimental behavior and demonstrating the need to account for
load redistribution within the remaining tendon. An appropriate
redistribution model would more accurately estimate the reduced
load that can be borne by a torn or lacerated tendon and may iden-
tify significant, shear-based mechanical features for future
models.

Multiple analytical models with different underlying assump-
tions have been formulated to describe load redistribution in
aligned fiber composites with broken fibers. The purpose of this
study is to consider and compare three of these analytical methods
to describe load redistribution in a partially lacerated tendon. The
first analytical model, known as global load sharing (GLS) or
equal load sharing (ELS), is based on the hypothesis of an equal
redistribution of load among surviving fibers and is similar to the
simple model considered by Kondratko et al. [16,17]. The other
two models are based on a “shear-lag” hypothesis that fibers and
matrix undergo different displacements when a load is applied,
leading to a “lag” in the displacement in the vicinity of the fiber-
matrix interface with respect to the matrix [18]. Several shear-lag
models (SLM) have been developed in the past; two such models
are employed in the present study, both of which utilize a rela-
tively simple 2D arrangement for fibers. The first is an early
model proposed by Hedgepeth [19]. The second is a later model
proposed by Wagner and Eitan [20] which built upon a widely
used model developed by Cox [18] and modified by Nairn [21].
Recently, SLMs have been applied to biological composite mod-
els to help describe behaviors [22,23]. By comparing models to
previous experimental data, this study seeks to identify the
mechanical elements that are essential to behaviors observed in
partially torn or lacerated tendons. In a broader sense, such infor-
mation may help identify key targets for future structure–function
inquiry.

2 Theoretical Background

Several models to describe failure of fibrous composite
materials have been developed [18–21,24]; many try to enhance
an earlier global model such as GLS by looking at the interfacial
(fiber–matrix) phenomena. The present section provides an over-
view of GLS and SLMs considered for a 2D composite material
containing long aligned fibers analogous to the case of a cut or
partially torn tendon.

2.1 Definition of Damage Parameters. The stress concentra-
tion factor (SCF) provides a reasonable prediction of failure load
for brittle materials with holes or notches. A definition commonly
used in mechanics of materials for the SCF is expressed by

SCF ¼ rmax

raverage

¼ raverage þ Dr
raverage

¼ 1þ Dr
raverage

(1)

where raverage is the nominal or average stress value defined using
the initial CSA, rmax is the maximum local stress in a material
when a notch is present (rmax� raverage), and Dr¼ rmax� raverage

is the stress increase corresponding to the SCF. When no notch is
present, rmax¼ raverage, and SCF¼ 1; when a notch is present
Eq. (1) is larger than unity.

This metric is not, in general, equal to the corresponding ratio
of failure stresses in materials with some ductility. For example, if
applied stress causes local yield or other damage attenuation
mechanisms near the notch tip, the notch is effectively blunted
[25,26]. That reduces the stress concentration, and the material
breaks at a higher stress than predicted by its elastic SCF. Further-
more, calculation of SCF via analysis in the theory of elasticity or
via finite element analyses (FEA) requires full knowledge of
the constitutive equations describing the material. Tendons may
exhibit local tearing when cut and other diffuse damage when
stretched, but because of structural and compositional complexity,

their local mechanical behavior is not yet fully described in terms
of constitutive equations. SCF values are typically used as dimen-
sionless ratios amplifying the potential of a load to cause damage.
Alternatively, this study uses the inverse of the Eq. (1) metric to
represent the reduced load bearing capacity of a partially lacerated
tendon. The damage parameter K1 is then

K1 ¼ 100 � 1=SCF ¼ 100 � raverage

rmax

(2)

Equation (2) is smaller than 100% when a cut is present since it
compares stress in cut versus intact specimens, the former always
being smaller than the latter. The SCF is amenable to calculation
but is not directly measurable. As discussed previously, the SCF
does not predict strength here since tendons are not brittle.

Because it is straightforward to measure the mechanical
strength of a specimen, a second damage parameter K2 is defined
as the percentage of failure stress rfailure for a damaged specimen
to the corresponding failure stress for an undamaged specimen

K2 ¼ 100 � rfailure damaged

rfailure undamaged

(3)

Such a damage parameter is pertinent to the performance of mate-
rials intended to support load.

In tendon and ligament, functional failure (inability to fulfill
physiologic function as normal) can occur even when damage is
insufficient to cause complete rupture. Such damage, if of suffi-
cient magnitude, can cause dysfunctional laxity of the joint. Our
evaluation therefore utilizes the increased compliance caused by a
cut. In that context, a third damage parameter K3 is defined as the
ratio of engineering stress r to obtain a specified strain for a dam-
aged specimen to the corresponding engineering stress for an
undamaged specimen

K3 ¼ 100 � rdamaged

rundamaged

(4)

The damage parameter K3 is readily measurable from stress–strain
curves.

2.2 Global Load Sharing Model. GLS, sometimes referred
to as ELS [27,28], is based on the hypothesis that unbranched
fibers are the only load bearing elements in the material and thus
the strength of the material is directly related to the number of
intact fibers. Further, no shearing effect by the matrix is consid-
ered. Therefore, if a number of fibers, q, out of the total number of
aligned fibers, N, is cut, stress is equally redistributed on the
remaining, N � q, intact fibers so that Eq. (5) is satisfied

rdamagedN ¼ rundamagedðN � qÞ (5)

The damage parameter relating to the nominal stress in the dam-
aged structure at a given strain, as defined in Eq. (4), can then be
obtained from Eq. (5)

K3 ¼ 100 � N � q

N
(6)

or, as a function of the percentage of cut fibers

q% ¼ 100 � q

N
(7)

K3 ¼ 100� q% (8)

Figure 1 shows the behavior of K3 according to the GLS model
for different percentages of cut fibers; note that the relationship
between K3 and percentage of cut fibers is linear.
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2.3 Shear-Lag Models. GLS is a simplistic model that assumes
that all intact fibers are subject to the same additional stress when
some fibers are cut. However, when the matrix of a composite
interacts with fibers, it biases the way intact fibers share stress
released from the cut fibers [20]. Surviving fibers closest to a bro-
ken one absorb more of the released stress than those further away
[20,28]. A model for this requires a local load sharing (LLS) rule
to redistribute stress among the intact fibers such that fiber stress
is greater near broken fibers and smaller for fibers at larger distan-
ces. LLS will be implemented using the shear-lag hypothesis in
which fibers and matrix undergo different deformations that
change radially from the fiber-matrix interface of a cut fiber, caus-
ing the fiber to lag in displacement with respect to the matrix
[18,29].

Examples of SLMs are given in Secs. 2.3.1–2.3.4, each based
on different assumptions and considerations. Some assumptions,
however, are generally consistent with all of these models [30]:

(1) Behaviors of the fiber and matrix are linearly elastic.
(2) The fiber-matrix interface is infinitesimally thin.
(3) No strain discontinuity is present across the fiber–matrix

interface (i.e., the bond between the matrix and fibers on
the fiber surface is perfect).

(4) No bonding occurs between the matrix and the end faces of
the fibers.

2.3.1 Cox’s Shear-Lag Model. The term “shear-lag” in this
study is associated with the stress transfer analysis method devel-
oped by Cox [18]. The method was based on equilibrium between
the average axial fiber stress rf in the z direction and the shear
stress at the interface with the surrounding matrix, s, defined for
cylindrical geometry as

@rf

@z
¼ � 2s

r0

(9)

where rf is the average axial stress in the fiber and r0 is the fiber
radius. The assumption that

s / wm � wf (10)

was introduced where wm is the matrix displacement and wf is the
fiber displacement.

Shear stress s is related to shear strain c in elasticity as s ¼ Gc.
Cox introduced a fundamental shear-lag assumption, that

c ¼ @w

@r
! s ¼ G

@w

@r
(11)

From the equilibrium in Eq. (9) and the assumptions in Eqs. (10)
and (11), Cox derived a one-dimensional equation for fiber stress
which can be written as

@2rf

@z2
� b2rf ¼ �b2rf1 (12)

where rf1 is the far-field stress, i.e., the average axial stress in the
fiber at an infinite axial distance from the cut region, and b is the
shear-lag parameter, defined as

b ¼ bCox ¼
1

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gm

Ef ln
S

r0

� �
vuuut (13)

where Gm is the matrix shear modulus, Ef is the fiber axial modu-
lus, and s is the mean center-to-center fiber distance. When Cox’s
model is applied to concentric cylinders with matrix surrounding
the fiber, s is generally considered equal to R (the outer radius of
the matrix cylinder) [31]. A more literal interpretation of Cox’s
analysis might use s ¼ 2R [21].

The shear-lag concept presented here is used in the models in
Secs. 2.3.2–2.3.4.

2.3.2 Nairn’s Shear-Lag Model Modification. The shear-lag
coefficient defined by Eq. (13) was further developed by Nairn
[21], who introduced simplifying assumptions into an analysis of
Eq. (12) in a cylindrical geometry. The first assumption, in line
with Cox’s fundamental shear-lag assumption, is that

@u

@z

����
����� @w

@r

����
���� (14)

such that, in the expression for the interfacial shear stress,
srz ¼ Gcrz ¼ G ð@w=@rÞ þ ð@u=@zÞð Þ, it is assumed

crz ¼
@w

@r
(15)

The next assumption is that a shear-lag stress state admits srz,
normally defined by linear functions of z (fiber-direction), to be
written in a more general form

srz ¼
f0ðzÞr

2
þ f1ðzÞ

r
(16)

where f0ðzÞ and f1ðzÞ are functions of z [21], which are not neces-
sarily linear.

Next, a one-dimensional Hooke’s law is assumed, thereby
ignoring transverse stresses. Therefore

hrrr þ r##i ¼ 0 (17)

or, more explicitly,

vA

EA
hrrr þ r##i

����
����� hrzzi

EA
þ aAT

����
���� (18)

where hf i denotes averaging over the considered cylinder (fiber or
matrix) and aAT is the strain due to an eventual temperature dif-
ference in the axial direction as specified by the subscript A.

Finally, rzz and the axial displacement w in a fiber should be
independent of r but, since they in general depend on it, such
dependence is assumed to be sufficiently weak.

The resulting coefficient for a fiber surrounded by matrix (mod-
eled as two concentric cylinders, the inner cylinder a solid fiber
cylinder, the outer cylinder a hollow matrix cylinder) is given by

Fig. 1 K3 (postlaceration stress as a percentage of prelacera-
tion value) predictions versus q% (percentage of cut fibers)
using the GLS model. A simple linear relation between reduc-
tion in stress and percentage of broken fibers is obtained.
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bNairn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

r2
0EfEm

EfVf þ EmVm

Vm

4Gf

þ 1

2Gm

1

Vm

ln
1

Vf

� �
� 1� Vm

2

� �
2
664

3
775

vuuuuut (19)

where Ef , Em, Gf , and Gm are the axial and shear moduli of the
fiber and matrix, respectively, r0 is the fiber radius, and Vf and Vm

are the fiber and matrix volume fractions defined by

Vf ¼
r2

0

R2
and Vm ¼

R2 � r2
0

R2
¼ 1� Vf (20)

where R is the outer radius of the matrix cylinder.
The assumptions for this analysis are the minimum number of

assumptions required; additional assumptions may be appropriate
for different problems [21].

2.3.3 Hedgepeth’s Damage Model. A study of overloading in
an intact fiber was performed by Hedgepeth [19,24] in which the
force pn in the nth fiber is given in terms of displacement wf;n by

pn ¼ EA
@wf;n

@x
(21)

The shear force per unit length between adjacent fibers is defined
as ðGm=dÞ wf;nþ1 � wf;n

� �
, where d is the fiber spacing, such that

the equilibrium of an element of the nth fiber requires

Ef

@2wf;n

@x2
þ Gm

d
ðwf;nþ1 � 2wf;n þ wf;n�1Þ ¼ m

@2wf;n

@t2
(22)

where m is the mass per unit length associated with a filament.
The shear-lag assumption in Eq. (14) was used to simplify the

equilibrium equation defined in Eq. (22) by removing the trans-
verse displacement dependence from the longitudinal equilibrium
equation; thus, fiber stress and matrix shear stress can be deter-
mined without solving the transverse equilibrium equation. Addi-
tional assumptions were that the transverse distance between
adjacent fibers, d, is constant, fibers carry only normal load and
matrix only shear load, fiber breaks were on a transverse line, and
small deflection elasticity theory is used for the analysis. Hedge-
peth’s analysis separates the static and the dynamic rupture cases;
since only the former is of interest here, the right hand side in
Eq. (22) is set to zero.

The maximum value of SCF (or, correspondingly, the minimum
value for K3) occurs at the edge of the cut, where boundary condi-
tions yield equations in which the effects of the geometric proper-
ties dominate [19]. Moreover, when a constant value for the fiber
distance is assumed, the most influential parameters for the value
of SCF are the number of broken fibers and the total number of
fibers in the model. The expression of the maximum stress con-
centration factor, occurring at the first intact fiber adjacent to the
broken ones, generalized for the case of q < N broken fibers is
defined as

SCFq ¼
Yq

j¼1

2jþ 2

2jþ 1
(23)

The subscript q denotes the dependence on q broken fibers. Note
that Eq. (23) provides a SCF according to its traditional definition
given by Eq. (1). The following expression for a damage parame-
ter will be used in the present study:

K3 ¼ 100

�Yq

j¼1

2jþ 2

2jþ 1
(24)

Figure 2 graphically demonstrates the curve calculated in
Eq. (24) when a 2D composite with 100 fibers is considered.

Equations (23) and (24) do not allow a formulation of K3 solely
in terms of q% as it was in Eq. (8), so the relationship plotted in
Fig. 2 is specific to the considered case. However, the general
shape provided by the relationship in Eq. (24) for the damage
parameter K3 is asymptotic in behavior regardless of the number
of fibers in the considered composite.

2.3.4 Wagner and Eitan’s Damage Model. Wagner and Eitan
[20] extend Cox’s model to a case with many cut fibers using lin-
ear superposition of the stress increases due to each of the broken
fibers. Wagner and Eitan then compute an overall SCF for a clus-
ter of broken fibers. A 2D geometry with aligned fibers is consid-
ered (no restriction from the generalization to a 3D case is made
provided that a reliable representation of the composite’s 3D ge-
ometry is available). Computation of the nominal load borne by
each intact fiber in a lacerated object is possible using the Cox
and Nairn shear-lag approaches, which consider the geometrical
and material properties of the composite.

The following expression for the locally effective SCF on the
first intact fiber next to a cluster of broken fibers is obtained (sub-
script q denotes that more than one broken fiber is considered for
the calculation):

SCFwq ¼ 1þ
Xq

i¼1

sinh bi

kc

2
� z

� �	 


sinh bi

kc

2

� �	 
 CðqiÞ

8>><
>>:

9>>=
>>; (25)

where bi is the shear-lag coefficient for the ith cut fiber;
qi ¼ 2Ri=r0 is the corresponding nondimensional radial distance
from the ith broken fiber to the center of the first intact fiber; 2Ri

is the dimensional distance; r0 is the cut fiber’s radius; kc is the
stress (or shear) transfer length, i.e., twice the distance from the
cut region over which the fiber’s strain corresponds to the matrix
value (doubled since the behavior is symmetric moving further
from the cut region in both directions along the fiber’s length);
and z is the variable accounting for the axial distance from the cut
region. Equation (25) is then valid for z 2 0; ðkc=2Þ½ �. C qið Þ is
defined as

Fig. 2 K3 predictions versus q% (percent cut fibers for the 100
fiber case) according to the Hedgepeth model. An asymptotic
shape is obtained. Note that values of K3 depend directly on the
absolute number of cut fibers in the material rather than on the
percent of cut fibers.
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CðqiÞ ¼
1

p

ð#MAXi

0

qi cos#� 1

q2
i þ 1� 2qi cos#

d# (26)

where #MAXi
¼ arccosðq�1

i Þ is the maximum angle under which
the cut of the ith fiber still affects the next intact neighbor (see
Fig. 3).

Equations (25) and (26) are then used to compute local SCF at
every location along every intact fiber resulting from a cluster
of breaks; linear superposition is assumed once again and the
following formula is obtained for the overall local SCF on the jth
fiber:

SCFwqj ¼ 1þ
Xq

i¼1

sinh bij

kc

2
� z

� �	 


sinh bij

kc

2

� � CðqijÞ

8>><
>>:

9>>=
>>; (27)

The meaning of the variables is analogous to those defined for
Eq. (25), referring to the jth intact fiber rather than to the next
neighbor only. Since no specification for the shear-lag coefficient
is made, either the Cox or the Nairn definition can be used; how-
ever, the latter demonstrated more favorable results in comparison
with FEA data [21].

Wagner and Eitan also present an expression to calculate the
maximum SCF in the composite, regarded as the global SCF for
the lacerated specimen, which is obtained by observing that
Eq. (27) provides values that decrease when z or Rij values
increase so that the maximum occurs at z ¼ 0, i.e., at the cut’s
boundary on the first intact fiber next to the cluster of breaks

SCFwqMAX ¼ 1þ
Xq

i¼1

CðqiÞ (28)

Eq. (28) does not include the shear-lag coefficient b; therefore
approaches based on Cox’s and Nairn’s definitions of b coin-
cide when only the maximum stress concentration is consid-
ered. In the present study, the SCF of the whole structure
(based upon LLS assumptions) occurs on the fiber adjacent to
the cut.

Based on Eqs. (25)–(28), the following expressions for the
damage parameter can be defined:

K3;local¼
100

SCFwqj
¼100

,
1þ
Xq

i¼1

sinh bij

kc

2
�z

� �	 


sinh bij

kc

2

� �	 
 CðqijÞ

8>><
>>:

9>>=
>>;

8>><
>>:

9>>=
>>;

(29)

K3;max ¼ 100=SCFwqMAX ¼
100

1þ
Xq

i¼1

CðqiÞ
(30)

Equations (29) and (30) are employed in Sec. 3 with reference
to the cut tendon case; the former helps visualize the results of the
application of Wagner and Eitan’s model, while the latter provides
results that can be related to experimental data published in
Ref. [16].

3 Application to the Partially Cut Tendon Case

Tendon extracellular matrix is characterized by collagen fibrils
organized into higher level structures (fibers and fascicles) and
immersed in a “ground substance” composed mainly of proteogly-
cans, glycoproteins, and water. The terms “fiber” and “fibril” are
not to be confused here. The term “fiber” has been used up to this
point in compliance with the composite material nomenclature
and refers to the main load bearing elements in such materials,
whereas the term “fibril” refers to the smaller fibrous structures
(predominantly collagen I) within tendon fibers (tendon fibers
being a higher-order organizational structure). The mechanical
properties of the fibril and ground substance components are very
different, the former quite stiff and the latter much more compli-
ant. Moreover, fibrils are prominently oriented along the tendon
longitudinal axis such that the tissue mechanical properties are
directionally dependent (stronger along the long axis). Con-
versely, ground substance appears to have no preferential orienta-
tion. We therefore study tendon behavior by modeling it as a
fibrous composite material with long collagen fibrils interspaced
by ground substance. Our study considers that the fibers in com-
posite model terminology correspond to fibrils in tendon and the
composite model matrix corresponds to the ground substance of
tendon.

Determination of K3 in a partially lacerated tendon (as a func-
tion of the percentage of cut fibrils) is attempted here by means of
the three analytical models reviewed in Sec. 2. Geometrical and
material parameters were obtained from the literature, with pre-
cise values of some parameters chosen after a sensitivity analysis
was completed (analysis not reported in the present work). The
values obtained by Wagner and Eitan’s, GLS, and Hedgepeth’s
models are compared with published experimental results [16].
The effects the number of fibrils included in the 2D model of the
studied tendon and of the fibril volume fraction, Vf , have on K3

are separately investigated.

3.1 Modeling of a 2D Simplified Tendon Comprised of 100
Aligned Elastic Fibrils. The following example refers to a 2D
composite material comprised of 100 aligned collagen fibrils
embedded in a ground substance matrix (Fig. 4). Fibril behavior is
assumed to be purely elastic (ignoring viscoelastic behavior), and
higher level structures, fibril cross-linking, and crimp are
neglected. The rationale for neglecting crimp is that it will be lost
when the tendon is stretched enough to cause damage or rupture
of the fibrils. After applying appropriate geometrical and material
parameters, models will be compared based on their ability to pre-
dict the behavior of a partially torn tendon (as simulated with the
published experiment [16]).

Fig. 3 Model composite demonstrating intact and broken
fibers. # ranges from 0, along the line from the center of the
intact fiber to the center of the broken fiber, to
#MAXi

5 arccosðq�1
i Þ, at the intersection between the fiber radius

and the tangent drawn from the center of the broken fiber,
where qi 5 2Ri=r0. Adapted from Ref. [20].

Journal of Biomechanical Engineering SEPTEMBER 2014, Vol. 136 / 091006-5



3.1.1 Geometrical and Material Parameters. Geometrical and
material properties for model components were obtained from the
literature [30,32–36]. Wagner and Eitan’s model incorporating
either Cox’s or Nairn’s shear-lag parameter, b, requires knowl-
edge of the geometry and composition of the considered tissue;
this presents a significant complication to its application. Due to
the complexity and variability in these tissues, the literature is
inconsistent for material parameters and geometries. However,
some meaningful ranges are provided by Herchenhan et al. [32],
and ranges for fibril volume fraction can be found in studies by
Lavagnino et al. [34]. Limited information is available on the sen-
sitivity of these models to a variation in fibril and matrix volume
fractions Vf and Vm, fibril average diameter d0, fibril Young’s and
shear moduli Ef and Gf , matrix Young’s and shear moduli Em and
Gm, and stress transfer length kc.

Equation (27) requires estimation of kc in order to determine
the stress distribution across the modeled composite. Several
methods of determining kc are considered in the composite litera-
ture [30], and two recent papers which apply shear-lag analysis
to biological composites [22,23] follow a fully analytical
approach also based on shear-lag models. In this study, a simple
proportional relationship between Ef/Em and kc/d0 in the fashion
of Termonia [33,37] has been employed. This relationship pro-
vides results that are close to those obtained experimentally when
a value of Ef/Em¼ 100 is used, as in the present case [30]. An
additional parameter related to kc must be defined to determine
the distance over which a notch affects K3 on the first uncut fibril.
This parameter, called z99:9% so that it can be distinguished from
the corresponding initially assumed value for kc, is related to the
distance, measured from the cut region, at which the effect of the
cut is effectively negligible (or, the distance from the cut required
to regain the fibril’s original loading ability). It is usually assumed
that a prescribed fraction of kc denotes the fraction of the nominal
loading ability that is considered sufficiently close to a complete
stress transfer. This fraction is often arbitrarily chosen [30]; values
in excess of 90% are typically selected. The use of a 97% fraction,
suggested by Termonia [33], is quite common in the literature. A
value of 99.9% of the nominal loading ability of the tendon has
been considered sufficiently close to a complete stress transfer in
the present application (thus z99:9% represents the distance away

from the cut required to obtain 99.9% of the fibril’s original load-
ing ability).

A sensitivity analysis of parameters of Wagner and Eitan’s
model, using b from Cox’s or Nairn’s approach, was performed
before their application to the cut tendon case. This analysis, not
reported here, showed that the parameter with the largest influence
on K3 is the fibril volume fraction, as confirmed by Eqs. (28) and
(30) where the fibrils’ average distance, directly related to Vf , is
included in the computation of CðqiÞ.

Sensitivity of the stress transfer length ðz99:9%Þ on multiple pa-
rameters was evaluated for the two approaches of Wagner and
Eitan’s model in Eq. (27). For the Cox approach, the most influen-
tial parameters are the fibril volume fraction, fibril axial Young’s
modulus, and matrix shear modulus. In contrast, Vf is the most in-
fluential parameter when a Nairn approach is used, despite the
fact that other geometrical and material parameters appear in the
corresponding equations. A very weak dependence of z99:9% on
Em, Gm, and Gf is observed in this last case, with almost no
dependence on Ef or on the value assumed for kc. Likewise, when
Cox’s shear-lag coefficient is used, the dependence of z99:9% on
the value assumed for kc and on Gm is only meaningful before a
threshold is reached. More specifically, for kc � 100 � d0 the com-
puted stress transfer length is almost constant with respect to a
variation in kc. z99:9%, expressed in number of fibril diameters d0,
is plotted versus kc=d0 for kc 2 d0; 250 � d0½ � in Fig. 5.

Sensitivities to specific parameter changes differ between the
Cox and Nairn approaches, affecting the values of K3 along each
fibril but not its local minimum. In both models, the fibrils’ aver-
age diameter does not influence the values of K3, provided that the
fibril volume, which is related to it, is fixed.

Table 1 lists the parameter values used for the current
application as determined from the literature and from the

Fig. 5 Sensitivity of z99:9% to kc (both normalized to d0) accord-
ing to the Cox and Nairn models. The value assumed for kc is
meaningful for kc £ 100 � d0.

Table 1 Tendon’s geometric and material parameters

d0ðnmÞ 250 [34,38]
Vf 50% (adult tendon, wet) [34]
kc 100 � d0 [30,37]
EfðMPaÞ 2000 [39]
GfðMPaÞ 700 [32]
EmðMPaÞ 20 [32]
GmðMPaÞ 7 [32]

Fig. 4 Model two-dimensional composite; this example con-
tains multiple intact and one broken fibril. Inset illustrates the
linear cross-sectional profile (compared to traditional, elliptical,
three-dimensional profile of true tendon).
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sensitivity analysis starting from the reference ranges provided in
Ref. [32].

3.1.2 Results for a Prescribed Cut Depth. Figure 6 shows K3

for the lacerated tendon model as predicted by Eq. (29) when a
Cox (Fig. 6(a)) or Nairn (Fig. 6(b)) approach is used, respectively.
Regardless of approach, K3 increases when moving further from
the cut region in both directions, i.e., into the uncut fibril region
and along each of these fibrils.

The behavior of the surfaces shown in Fig. 6 with respect to the
fibril position and distance z=d0 along the fibril is further demon-
strated in Figs. 7 and 8 by 2D “slices” of the 3D figures. Figure 7
shows K3 values along the first intact fibril adjacent to the breaks;
note that Nairn’s model has a stronger dependence on z=d0 (dis-
tance away from the cut) compared to Cox’s model. This is due to
different formulations for the shear-lag coefficient b as a conse-
quence of differing assumptions.

Minimum K3 values correspond to maximum stress concentra-
tions, which occurs at z¼ 0. Therefore, Fig. 8 shows the minimum
K3 values, given as a percent of the original stress, for each of the
uncut fibrils (Nos. 21–100) due to Nos. 1–20 being cut.

Figures 6–8 show the dependence of Wagner and Eitan’s
model, using the shear-lag formulations of both Cox and Nairn
models, on the fibril position (number of fibrils away from the
cut) and on z=d0 (distance along the fibril away from the cut) for
the case when 20 fibrils are cut in a 100-fibril model. Next, the
results of the GLS, Hedgepeth, and Wagner and Eitan models for
a range of cut depths will be compared to experimental data from
a porcine flexor tendon with cut depths of approximately 10, 20,
50, and 65% of its CSA [16].

3.1.3 Results for Different Cut Depths: K3 Curves. The effect
of laceration depth on a simplified tendon model with 100 fibrils
is investigated and compared to experimental data [16].

Fig. 6 K3 versus fibril position (number of fibrils away from the notch) and distance z along the fibril normalized to fibril
diameter d0 using the (a) Cox model or (b) Nairn model shear-lag parameter with 20 cut fibrils in a simplified 100-fibril tendon
model. K3 increases with increased fibril position and distance along the fibril from the cut. The dependence on z=d0 is
stronger in Nairn’s model.

Fig. 7 K3 at the first intact fibril next to the notch (fibril posi-
tion 5 21) versus distance z (along the fiber) normalized to fibril
diameter d0 calculated using Cox and Nairn models with 20 cut
fibrils in a 100-fibril tendon model. The stronger dependence of
Nairn’s curve on z=d0 can be observed.

Fig. 8 Minimum K3 versus fibril position at z=d0 5 0 calculated
using Cox and Nairn models with 20 cut fibrils in a 100-fibril
tendon model. The curves obtained with Cox’s and Nairn’s
models are the same at the position z=d0 5 0.
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Geometric and material parameters in Table 1 were employed in
each of the models. The minimum K3 values given by GLS model
only require the knowledge of the percentage of cut fibrils, q%,
while expressions given by Hedgepeth’s model depend on the
exact number of cut fibrils, q, and Wagner and Eitan’s model
depends on the number of cut fibrils, q, and on the average fibril
diameter, d0 (related to the fibril volume fraction, Vf , when the
tendon size is fixed). When only the minimum K3 is of interest (as
in the current case, where the minimum determines whether
cracks propagate), no distinction between Cox’s and Nairn’s
approaches is needed since they coincide.

Figure 9 shows the effect of laceration depth for a tendon with
50% fibril volume fraction. The linearly decreasing curve pro-
vided by the GLS model is not adequate to describe the experi-
mentally observed behavior for cut depths less than 50% of the
tendon’s CSA in Ref. [16]. It becomes a better approximation for
deeper cuts (>50% of the tendon’s CSA); however, there are
only two data points in this region and more data may prove the
simplistic model insufficient. Curves provided by Hedgepeth’s
and Wagner and Eitan’s models follow the nonlinear shape of the
experimental data, indicating that they should be preferred over
the GLS model, especially for cuts less than 50% of the CSA.
However, the two SLMs differ significantly in output values;
those obtained from Hedgepeth’s model were more different from
the experimental data than Wagner and Eitan’s in the shallow
(<50% of CSA) cut region.

3.2 Modeling of 2D Simplified Tendons With an Increasing
Number of Aligned Elastic Fibrils. GLS modeling defines the
laceration in terms of a percentage of cut fibrils, which can be
related to the percentage of the cross-sectional area which is cut.
The SLMs depend on the absolute number of cut fibrils, which
must be related to the total number of fibrils included in the model
to get the percentage of cut fibrils; thus, the total number of fibrils
in the SLMs will likely affect their outcome.

As Wagner and Eitan’s model provides the best fit of the non-
linear experimental data behavior in a partially torn tendon among
the models considered in the present study, this model will be
used to investigate the effect of the model size on the minimum

values of K3. The numbers of fibrils used for the model sizes are
10, 20, 50, 100, 200, 500, and 1000.

Figure 10 shows the effect of model size on the minimum val-
ues of K3 for the considered laceration depths. In all four cases,
the computed effectively bearable load approaches the corre-
sponding experimental value as the number of fibrils included in
the model increases. This is true especially for cut depths in
the near-plateau region, i.e., 19.8% (Fig. 10(b)) and 47.2%
(Fig. 10(c)) of the tendon’s CSA. Here, the K3 values predicted by
the model converge upon the experimental values at high fibril
numbers; lower fibril numbers result in a predicted value higher
than the experimental. Model predictions for extremely shallow
(8.2% tendon CSA) and extremely deep (63.8%) cuts are also
improved by higher fibril numbers. Figure 10(a) shows that the
model prediction for K3 converges to a value lower than the corre-
sponding experimental value for cuts of 8.2% of the tendon’s
CSA. Conversely, the model prediction obtained for the deepest
cut (63.8% tendon CSA) in Fig. 10(d) converges to a value higher
than the experimental data. As the predicted values became as-
ymptotic at higher fibril numbers, model sizes greater than 1000
were not considered due to computation time.

Thus, Wagner and Eitan’s model best describes the behavior of
a partially torn tendon when more fibrils (>300) are included in
the model, and the 1000-fibril model converges on the experimen-
tal data for the middle-depth cuts.

3.3 Modeling of a 2D Simplified Tendon Comprised of
1000 Aligned Elastic Fibrils. In a final comparison, the simpli-
fied tendon considered in Sec. 3.1 was modeled with an increased
fibril number of 1000. Figure 11 shows the results of the applica-
tion of GLS, Hedgepeth’s, and Wagner and Eitan’s models to the
case of 1000 fibrils aligned in a 2D geometry, compared with the
experimental values [16]. The GLS curve has not changed from
the 100-fibril model as it does not depend on the number of
fibrils incorporated into the model. Conversely, Hedgepeth’s and
Wagner and Eitan’s curves have changed as a result of the
increased fibril number. While the Hedgepeth predicted values
deviate more from the experimental results for the larger fibril
model, Wagner and Eitan’s model predicted values give an
improved representation of the experimental data.

4 Discussion

Kondratko et al. examined the effect of partial thickness cuts on
tendon mechanical behavior, demonstrating a structure with com-
plex interactions in contrast to simple independent fibers [16].
Such interactions ubiquitously affect load distribution within a
tendon when compromised by cuts, pathology, or simply during
normal, but nonuniform physiologic loadings (e.g., entheses
change relative orientations). The present study represents an ini-
tial, analytical attempt to explore this interesting phenomenon.
We estimate the load bearing capacity in a partially cut tendon
using three different theoretical methods—GLS, Hedgepeth’s, and
Wagner and Eitan’s models—which were originally developed to
predict failure in fibrous composite materials. These three meth-
ods were applied to a simplified tendon model that assumed: (1) A
reduced number of aligned fibrils arranged in a 2D pattern, (2) no
viscoelasticity in the tissue, and (3) linearly elastic behavior for
the collagen fibrils. The presence of hierarchical structures such as
fibers, bundles, and fascicles was neglected, as was the presence
of crosslinking at any structural level. Material and geometrical
properties of the modeled tissue were obtained from the literature.

Despite the simplicity of the tendon model, it was possible to
identify Wagner and Eitan’s approach as the best candidate
among the three considered approaches to describe the experimen-
tal behavior of partially lacerated porcine flexor tendons [16]. The
GLS model predicted a linear decrease of K3 with increasing cut
depth, which was a poor fit of the experimental data [16], espe-
cially for cut depths less than 50% of the tendon’s CSA. Both
shear-lag approaches account for the number of disrupted

Fig. 9 Comparison between theoretical models with 100
aligned fibrils and published experimental results [16]. Wagner
and Eitan’s model (Wagner) is preferred over the others in the
shallow (<50% of tendon CSA) cut region. GLS is a better
approximation available for deeper cuts.
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fibrils as well as geometrical and mechanical properties in the
determination of K3; however, results differed between the mod-
els. The Wagner and Eitan model assumes that the shear-lag effect
is limited to a stress transfer length kc (centered at the location of
the fibril break), that only a portion of each fibril’s external cir-
cumference (corresponding to the fibrils’ contact area) influences
the residual load on each remaining fibril, and that the shear stress
s is variable along this portion of the circumference. Alterna-
tively, Hedgepeth’s model assumes that fibrils interact over their
entire length and that s is constant along each of the fibril–matrix
interfaces [19]. Differences resulting from these assumptions can
be observed in Figs. 9 and 11, which show that values obtained
from the Wagner and Eitan’s model are closer to experimental
tendon behavior than values provided by GLS and Hedgepeth’s
models.

Wagner and Eitan’s approach was then applied to a tendon
model with varying number of fibrils (Sec. 3.2). For the purpose
of reducing the computational time, reduced size models were
considered; however, increasing the number of fibrils included in
the model resulted in more accurate estimations of K3, as can be
observed when comparing Fig. 1 to Fig. 9. This suggests that a
full-size model may lead to more accurate estimates, particularly
in the mid-depth cut region between 20% and 50% of the tendon’s
CSA. With a full-size model, the maximum load that can be borne
by a lacerated tendon with cut depths in this region could poten-
tially provide mechanical insight on the 50% rule for surgical
consideration.

In the shallowest cut region (less than 20% of the initial CSA),
K3 values predicted by Wagner and Eitan’s model are lower than
observed experimental values of mechanical compromise. In the

Fig. 10 Effect of the number of fibrils included in Wagner and Eitan’s model (Wagner) on the computed K 3 for cuts of depths
(a) 8.2%, (b) 19.8%, (c) 47.2%, and (d) 63.8% of tendon CSA. The corresponding experimental value is also shown (mean
experimental value (solid line) and one standard deviation above/below the mean (dotted lines)). The analytical result
better approaches the experimental values when more fibrils are incorporated into the model (>300 fibrils), particularly in the
midsize (19.8%, 47.2% tendon CSA) cut depths.
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deepest cut region (greater than 50% of tendon CSA), K3 values
predicted by Wagner and Eitan’s model are higher than experi-
mental compromise. This inconsistency may be due in part to the
fact that the behavior in real tendon is variable with cut depth.
One explanation for multimodal behavior in tendons with shallow
cut depths relates to the formation of a fillet, a stress concentrator
that has been ameliorated by increased radius of curvature [35].
When many fibrils are cut, the distance between the two severed
ends in each fibril increases rapidly during tendon loading, such
that the leading edge of the cut region becomes more of a fillet.
The ratio between the fillet’s radius and the thickness of the
remaining intact portion of the tendon plays a role in determining
the resulting SCF (and, therefore, K3). When a very shallow cut is
present, the fillet is barely established due to minimal separation
of the cut fibrils when load is applied. The relatively small radius
results in rapid decreases in K3. When the cut is sufficiently deep,
a notable physiological fillet can be established such that the
effect of the cut is better mitigated, leading K3 to decrease much
more slowly with increasing cut depth. Physiologically, such
behavior would be advantageous, as the tissue spontaneously
establishes a fillet to partially protect the tendon from the effect of
the notch. Hierarchical structures and collagen cross-linking may
also play a role in the establishment and behavior of a fillet-like
structure. When the cut depth exceeds half of the tendon’s CSA,
the tissue appears compromised to an extent such that fillet forma-
tion no longer prevents the remaining fibrils from being progres-
sively torn under external load, resulting in a rapid decline in K3.

The SLMs provide physically impossible results at very large
cut depths, as K3 does not go to zero when 100% of the CSA is
cut. The mathematical expressions assume fibers are always pres-
ent away from the cut to share the load, which is a limitation to
their application. Therefore, these models fail to capture the
global effect of the cut on the behavior of the tendon.

A simple proportional relation between Ef/Em and kc/d0, in the
fashion of Termonia [33,37] has been employed in this study.
This method was chosen because it provides results that are rela-
tively close to those obtained experimentally when Ef/Em¼ 100,
however neither curve in Ref. [30] (one for the relation suggested
by Termonia and one obtained using Cox’s shear-lag model) quite

match the experimental results. The method using the relationship
obtained by Termonia was, however, a better fit. Our selection of
the value for the ratio kc/d0 has also been supported by a sensitiv-
ity analysis, based on the evaluation of the true distance to which
the load is redistributed among adjacent fibrils, as a function of
the initially assumed value for kc/d0.

The modeling performed herein applied shear-lag at a fibril
level albeit the phenomenon may occur at a different or even mul-
tiple hierarchical levels. We interpret results as proof of principle
that shear-lag plays an important role in tendon behavior and not
as proof of a specific fibril to fibril interaction. A comparison of
the assumptions in the Wagner and Eitan’s and Hedgepeth’s mod-
els may provide insight into the load redistribution phenomena in
a partially torn tendon and by extrapolation to other scenarios
with nonuniform load distribution. Wagner and Eitan’s model
starts from a much more detailed set of information regarding the
load redistribution in our model. Both a limited shear-interaction
in the direction of fibrils’ length and a limited interaction region
between fibrils are assumed in Wagner and Eitan’s model, which
may indicate that, within a partially torn tendon, the externally
applied load is shared among surviving load bearing subunits in a
fashion similar to those requirements.

The simplifications introduced in our tendon model also play a
role in the description of tendon behavior. For example, ignored phe-
nomena (i.e., crosslinking between fibers or fibrils, and hierarchical
structure and organization) may contribute to complex tendon behav-
ior in the very shallow cut (<10% tendon CSA) region by altering
the tissue’s load redistribution to be more efficient, leading to a
slower decrease in K3 than the Wagner and Eitan model predicted.
Conversely, as the cuts get deeper (larger than 50% of the tendon’s
CSA) and more of the native tendon structure is disrupted, the break-
down of these phenomena may result in load redistribution which is
no longer effective. Furthermore, the effects of a geometry simplifi-
cation to 2D and elastic assumption (ignoring the viscoelastic behav-
ior) have not been assessed; these may have a substantial role in
increasing the complexity of the tendon’s behavior. Though simpli-
fied, these models are potentially reasonable to discriminate between
methods in this study, increase our understanding of tendon behav-
ior, and ultimately help determine which laceration depths warrant
an operation based on predicted loading during activity.

It is worth noting that, while shear-lag models are sometimes
used for long-fiber material applications, they are more widely
used in short-fiber composites, though no restriction on long fibers
is made in either Cox’s or Nairn’s derivation of shear-lag models.
We represent the collagen fibrils as long fibers in our analysis,
since modeling fibrils as short fibers would be a poor representa-
tion of the microstructure as Provenzano and Vanderby have pre-
viously shown ligamentous tissues to contain continuous, long
collagen structures [36].

The current study represents a basic, shear-lag analysis of fibrils
to describe observed behavior in a partially lacerated tendon. It
introduces well-studied fibrous composite models into a new area.
Future analyses would likely be improved by incorporating
greater descriptive rigor from the composites literature. In particu-
lar, much effort has been devoted to the highly analogous problem
of partially lacerated, highly cracked composites in which issues
of local versus global load sharing are central. Although a
ceramic-matrix composite is not directly analogous to tendon,
basic concepts and methods introduced by Curtin [40] could be
adjusted for use in future tendon models. One potential example is
relating the fragmentation of each fiber in a multifiber composite
to that of a single fiber embedded in a homogeneous matrix (for
which a solution has been obtained) under the assumption that
fibers fracture independently and that load redistribution occurs
upon fiber fracture [40]. Further, developments in shear-lag
modeling which account for local load sharing include the break
influence superposition technique [41,42], an extension of Hedge-
peth’s model [19], and a formulation of the lattice Green’s func-
tion technique adapted to composite failure [43]. The use of a
Monte Carlo simulation model based on the 3D lattice Green’s

Fig. 11 Comparison between theoretical models with 1000
aligned fibrils and published experimental results [16]. Wagner
and Eitan’s model (Wagner) performed best of the investigated
models in the pre-50% cut region. The model has an asymptotic
shape, precluding it from accurately predicting values at very
high cut depths (e.g., predicted values do not go to zero after
100% of the fibrils are cut).
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function technique, such as performed by Ibnabdeljalil and Curtin
[44], may provide greater insight into future modeling applica-
tions, as this technique allows numerical analysis of relatively
large composites, up to several orders of magnitude larger than is
practical with finite element methods.

5 Conclusions

The present study identifies a promising analytical approach
based on Wagner and Eitan’s shear-lag model to describe the
behavior of a partially cut tendon. Despite many simplifying
assumptions, predictions are consistent with experimental obser-
vations [16] over a broad range of defect sizes. In particular, Wag-
ner and Eitan’s model best describes cut tendon behavior, among
those considered in the present study, following lacerations up to
50% of the tendon’s cross-sectional area. This encourages further
research toward a more rigorous 3D model that incorporates the
assumptions of Wagner and Eitan. However, both experimental
and analytical research must be done to correlate and describe the
biophysical mechanisms and hierarchical levels to be modeled.
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Appendix: Modeling of 2D Simplified Tendons With

Different Fibril Volume Fractions

The effect of the fibril volume fraction on the computed K3

on the 2D simplified tendon comprised of 100 aligned elastic
fibrils defined in Sec. 3.1 is investigated here using Wagner
and Eitan’s model and compared to experimental data [16].
Fibril volume fraction, Vf , is varied from 10 to 80% in 10%
increments. Figure 12 shows the effect of varying fibril volume
fraction. It should be noted that the effect of fibril volume on
the computed K3 was calculated using a small fibril number,
and no convergence to the experimental results is observed.
Rather, the model-calculated values remain higher than the
experimental data, which is consistent with the results of
Sec. 3.2.

Fig. 12 Effect of fibril volume fraction on K3 computed with Wagner and Eitan’s model (Wag-
ner) for cut depths of (a) 8.2%, (b) 19.8%, (c) 47.2%, and (d) 63.8% of the tendon’s CSA. No con-
vergence between the model-predicted values and the experimental data is observed when
fibril volume fraction is increased between 10% and 80%.
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