9 research outputs found

    Validation of the BOADICEA model and a 313-variant polygenic risk score for breast cancer risk prediction in a Dutch prospective cohort

    Get PDF
    Purpose: We evaluated the performance of the recently extended Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA version 5) in a Dutch prospective cohort, using a polygenic risk score (PRS) based on 313 breast cancer (BC)–associated variants (PRS313) and other, nongenetic risk factors. Methods: Since 1989, 6522 women without BC aged 45 or older of European descent have been included in the Rotterdam Study. The PRS313 was calculated per 1 SD in controls from the Breast Cancer Association Consortium (BCAC). Cox regression analysis was performed to estimate the association between the PRS313 and incident BC risk. Cumulative 10-year risks were calculated with BOADICEA including different sets of variables (age, risk factors and PRS313). C-statistics were used to evaluate discriminative ability. Results: In total, 320 women developed BC. The PRS313 was significantly associated with BC (hazard ratio [HR] per SD of 1.56, 95% confidence interval [CI] [1.40–1.73]). Using 10-year risk estimates including age and the PRS313, other risk factors improved the discriminatory ability of the BOADICEA model marginally, from a C-statistic of 0.636 to 0.653. Conclusions: The effect size of the PRS313 is highly reproducible in the Dutch population. Our results validate the BOADICEA v5 model for BC risk assessment in the Dutch general population

    An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex

    Get PDF
    The North American Ice Sheet Complex (NAISC; consisting of the Laurentide, Cordilleran and Innuitian ice sheets) was the largest ice mass to repeatedly grow and decay in the Northern Hemisphere during the Quaternary. Understanding its pattern of retreat following the Last Glacial Maximum is critical for studying many facets of the Late Quaternary, including ice sheet behaviour, the evolution of Holocene landscapes, sea level, atmospheric circulation, and the peopling of the Americas. Currently, the most up-to-date and authoritative margin chronology for the entire ice sheet complex is featured in two publications (Geological Survey of Canada Open File 1574 [Dyke et al., 2003]; ‘Quaternary Glaciations – Extent and Chronology, Part II’ [Dyke, 2004]). These often-cited datasets track ice margin recession in 36 time slices spanning 18 ka to 1 ka (all ages in uncalibrated radiocarbon years) using a combination of geomorphology, stratigraphy and radiocarbon dating. However, by virtue of being over 15 years old, the ice margin chronology requires updating to reflect new work and important revisions. This paper updates the aforementioned 36 ice margin maps to reflect new data from regional studies. We also update the original radiocarbon dataset from the 2003/2004 papers with 1541 new ages to reflect work up to and including 2018. A major revision is made to the 18 ka ice margin, where Banks and Eglinton islands (once considered to be glacial refugia) are now shown to be fully glaciated. Our updated 18 ka ice sheet increased in areal extent from 17.81 to 18.37 million km2, which is an increase of 3.1% in spatial coverage of the NAISC at that time. Elsewhere, we also summarize, region-by-region, significant changes to the deglaciation sequence. This paper integrates new information provided by regional experts and radiocarbon data into the deglaciation sequence while maintaining consistency with the original ice margin positions of Dyke et al. (2003) and Dyke (2004) where new information is lacking; this is a pragmatic solution to satisfy the needs of a Quaternary research community that requires up-to-date knowledge of the pattern of ice margin recession of what was once the world’s largest ice mass. The 36 updated isochrones are available in PDF and shapefile format, together with a spreadsheet of the expanded radiocarbon dataset (n = 5195 ages) and estimates of uncertainty for each interval

    Holocene history of Arctic ice shelves

    No full text

    A millennial-scale record of Arctic Ocean sea ice variability and the demise of the Ellesmere Island ice shelves

    Get PDF
    Sea-ice ice shelves, at the apex of North America (>80N), constitute the oldest sea ice in the Northern Hemisphere. We document the establishment and subsequent stability of the Ward Hunt Ice Shelf, and multiyear landfast sea ice in adjacent fiords, using 69 radiocarbon dates obtained on Holocene driftwood deposited prior to coastal blockage. These dates (47 of which are new) record a hiatus in driftwood deposition beginning 5500 cal yr BP, marking the inception of widespread multiyear landfast sea ice across northern Ellesmere Island. This chronology, together with historical observations of ice shelf breakup (1950 to present), provides the only millennial-scale record of Arctic Ocean sea ice variability to which the past three decades of satellite surveillance can be compared. Removal of the remaining ice shelves would be unprecedented in the last 5500 years. This highlights the impact of ongoing 20th and 21st century climate warming that continues to break up the remaining ice shelves and soon may cause historically ice-filled fiords nearby to open seasonally

    Quaternary geology of the Duck Hawk Bluffs, southwest Banks Island, Arctic Canada: a re-investigation of a critical terrestrial type locality for glacial and interglacial events bordering the Arctic Ocean

    Get PDF
    Duck Hawk Bluffs, southwest Banks Island, is a primary section (8 km long and 60 m high) in the western Canadian Arctic Archipelago exposing a long record of Quaternary sedimentation adjacent to the Arctic Ocean. A reinvestigation of Duck Hawk Bluffs demonstrates that it is a previously unrecognized thrust-block moraine emplaced from the northeast by Laurentide ice. Previous stratigraphic models of Duck Hawk Bluffs reported a basal unit of preglacial fluvial sand and gravel (Beaufort Fm, forested Arctic), overlain by a succession of three glaciations and at least two interglacials. Our observations dismiss the occurrence of preglacial sediments and amalgamate the entire record into three glacial intervals and one prominent interglacial. The first glacigenic sedimentation is recorded by an ice-contact sandur containing redeposited allochthonous organics previously assigned to the Beaufort Fm. This is overlain by fine-grained sediments with ice wedge pseudomorphs and well-preserved bryophyte assemblages corresponding to an interglacial environment similar to modern. The second glacial interval is recorded by ice-proximal mass flows and marine rhythmites that were glacitectonized when Laurentide ice overrode the site from Amundsen Gulf to the south. Sediments of this interval have been reported to be magnetically reversed (>780 ka). The third interval of glacigenic sedimentation includes glacifluvial sand and gravel recording the arrival of Laurentide ice that overrode the site from the northeast (island interior) depositing a glacitectonite and constructing the thrust block moraine that comprises Duck Hawk Bluffs. Sediments of this interval have been reported to be magnetically normal (<780 ka). The glacitectonite contains a highly deformed melange of pre-existing sediments that were previously assigned to several formally named, marine and interglacial deposits resting in an undeformed sequence. In contrast, the tectonism associated with the thrust block moraine imparted pervasive deformation throughout all underlying units, highlighted by a previously unrecognized raft of Cretaceous bedrock. During this advance, Laurentide ice from the interior of Banks Island coalesced with an ice stream in Amundsen Gulf, depositing the interlobate Sachs Moraine that contains shells as young as ∼24 cal ka BP (Late Wisconsinan). During deglaciation, meltwater emanating from these separating ice lobes deposited outwash that extended to deglacial marine limit (11 m asl) along the west coast of Banks Island. Our new stratigraphic synthesis fundamentally revises and simplifies the record of past Quaternary environments preserved on southwest Banks Island, which serves as a key terrestrial archive for palaeoenvironmental change

    The role of laboratory investigation in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. The EU Concerted Action on Virus Meningitis and Encephalitis.

    No full text
    As effective therapies for the treatment of herpes simplex encephalitis (HSE) have become available, the virology laboratory has acquired a role of primary importance in the early diagnosis and clinical management of this condition. Several studies have shown that the polymerase chain reaction (PCR) of CSF for the detection of herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2) DNA provides a reliable method for determining an aetiological diagnosis of HSE. The use of PCR in combination with the detection of a specific intrathecal antibody response to HSV currently represents the most reliable strategy for the diagnosis and monitoring of the treatment of adult patients with HSE. The use of these techniques has also led to the identification of atypical presentations of HSV infections of the nervous system and permits the investigation of patients who develop a relapse of encephalitic illness after an initial episode of HSE. A strategy for the optimal use of the investigative laboratory in the diagnosis of HSE and subsequent management decisions is described
    corecore