3,488 research outputs found
Galactic Potentials
The information contained in galactic rotation curves is examined under a
minimal set of assumptions. If emission occurs from stable circular geodesic
orbits of a static spherically symmetric field, with information propagated to
us along null geodesics, observed rotation curves determine galactic potentials
without specific reference to any metric theory of gravity. Given the
potential, the gravitational mass can be obtained by way of an anisotropy
function of this field. The gravitational mass and anisotropy function can be
solved for simultaneously in a Newtonian limit without specifying any specific
source. This procedure, based on a minimal set of assumptions, puts very strong
constraints on any model of the "dark matter".Comment: A somewhat longer form of the final version to appear in Physical
Review Letters.Clarification and further reference
Optomechanically induced transparency and cooling in thermally stable diamond microcavities
Diamond cavity optomechanical devices hold great promise for quantum
technology based on coherent coupling between photons, phonons and spins. These
devices benefit from the exceptional physical properties of diamond, including
its low mechanical dissipation and optical absorption. However the nanoscale
dimensions and mechanical isolation of these devices can make them susceptible
to thermo-optic instability when operating at the high intracavity field
strengths needed to realize coherent photon--phonon coupling. In this work, we
overcome these effects through engineering of the device geometry, enabling
operation with large photon numbers in a previously thermally unstable regime
of red-detuning. We demonstrate optomechanically induced transparency with
cooperativity > 1 and normal mode cooling from 300 K to 60 K, and predict that
these device will enable coherent optomechanical manipulation of diamond spin
systems
Single-crystal diamond low-dissipation cavity optomechanics
Single-crystal diamond cavity optomechanical devices are a promising example
of a hybrid quantum system: by coupling mechanical resonances to both light and
electron spins, they can enable new ways for photons to control solid state
qubits. However, realizing cavity optomechanical devices from high quality
diamond chips has been an outstanding challenge. Here we demonstrate
single-crystal diamond cavity optomechanical devices that can enable
photon-phonon-spin coupling. Cavity optomechanical coupling to
frequency () mechanical resonances is observed. In room temperature
ambient conditions, these resonances have a record combination of low
dissipation (mechanical quality factor, ) and high
frequency, with sufficient
for room temperature single phonon coherence. The system exhibits high optical
quality factor () resonances at infrared and visible
wavelengths, is nearly sideband resolved, and exhibits optomechanical
cooperativity . The devices' potential for optomechanical control of
diamond electron spins is demonstrated through radiation pressure excitation of
mechanical self-oscillations whose 31 pm amplitude is predicted to provide 0.6
MHz coupling rates to diamond nitrogen vacancy center ground state transitions
(6 Hz / phonon), and stronger coupling rates to excited state
transitions.Comment: 12 pages, 5 figure
Stability of Transparent Spherically Symmetric Thin Shells and Wormholes
The stability of transparent spherically symmetric thin shells (and
wormholes) to linearized spherically symmetric perturbations about static
equilibrium is examined. This work generalizes and systematizes previous
studies and explores the consequences of including the cosmological constant.
The approach shows how the existence (or not) of a domain wall dominates the
landscape of possible equilibrium configurations.Comment: 12 pages, 7 figures, revtex. Final form to appear in Phys. Rev.
New Wrinkles on an Old Model: Correlation Between Liquid Drop Parameters and Curvature Term
The relationship between the volume and surface energy coefficients in the
liquid drop A^{-1/3} expansion of nuclear masses is discussed. The volume and
surface coefficients in the liquid drop expansion share the same physical
origin and their physical connection is used to extend the expansion with a
curvature term. A possible generalization of the Wigner term is also suggested.
This connection between coefficients is used to fit the experimental nuclear
masses. The excellent fit obtained with a smaller number of parameters
validates the assumed physical connection.Comment: 6 pages, 2 figure
An exact self-similar solution for an expanding ball of radiation
We give an exact solution of the Einstein equations which in 4D can be
interpreted as a spherically symmetric dissipative distribution of matter, with
heat flux, whose effective density and pressure are nonstatic, nonuniform, and
satisfy the equation of state of radiation. The matter satisfies the usual
energy and thermodynamic conditions. The energy density and temperature are
related by the Stefan-Boltzmann law. The solution admits a homothetic Killing
vector in , which induces the existence of self-similar symmetry in 4D,
where the line element as well as the dimensionless matter quantities are
invariant under a simple "scaling" group.Comment: New version expanded and improved. To appear in Int. J. Mod. Phys.
Single crystal diamond nanobeam waveguide optomechanics
Optomechanical devices sensitively transduce and actuate motion of
nanomechanical structures using light. Single--crystal diamond promises to
improve the performance of optomechanical devices, while also providing
opportunities to interface nanomechanics with diamond color center spins and
related quantum technologies. Here we demonstrate dissipative
waveguide--optomechanical coupling exceeding 35 GHz/nm to diamond nanobeams
supporting both optical waveguide modes and mechanical resonances, and use this
optomechanical coupling to measure nanobeam displacement with a sensitivity of
fm/ and optical bandwidth nm. The nanobeams are
fabricated from bulk optical grade single--crystal diamond using a scalable
undercut etching process, and support mechanical resonances with quality factor
at room temperature, and in cryogenic
conditions (5K). Mechanical self--oscillations, resulting from interplay
between photothermal and optomechanical effects, are observed with amplitude
exceeding 200 nm for sub-W absorbed optical power, demonstrating the
potential for optomechanical excitation and manipulation of diamond
nanomechanical structures.Comment: Minor changes. Corrected error in units of applied stress in Fig. 1
Efficient telecom to visible wavelength conversion in doubly resonant GaP microdisks
Resonant second harmonic generation between 1550 nm and 775 nm with outside
efficiency is demonstrated in a gallium
phosphide microdisk cavity supporting high- modes at visible ()
and infrared () wavelengths. The double resonance condition was
satisfied through intracavity photothermal temperature tuning using W of 1550 nm light input to a fiber taper and resonantly coupled to
the microdisk. Above this pump power efficiency was observed to decrease. The
observed behavior is consistent with a simple model for thermal tuning of the
double resonance condition.Comment: 6 pages, 4 figure
- …