5,189 research outputs found

    Maximally extended, explicit and regular coverings of the Schwarzschild - de Sitter vacua in arbitrary dimension

    Full text link
    Maximally extended, explicit and regular coverings of the Schwarzschild - de Sitter family of vacua are given, first in spacetime (generalizing a result due to Israel) and then for all dimensions DD (assuming a D−2D-2 sphere). It is shown that these coordinates offer important advantages over the well known Kruskal - Szekeres procedure.Comment: 12 pages revtex4 5 figures in color. Higher resolution version at http://www.astro.queensu.ca/~lake/regularcoordinates.pd

    Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions

    Full text link
    We experimentally investigate and utilize electrothermal feedback in a microwave nanobolometer based on a normal-metal (\mbox{Au}_{x}\mbox{Pd}_{1-x}) nanowire with proximity-induced superconductivity. The feedback couples the temperature and the electrical degrees of freedom in the nanowire, which both absorbs the incoming microwave radiation, and transduces the temperature change into a radio-frequency electrical signal. We tune the feedback in situ and access both positive and negative feedback regimes with rich nonlinear dynamics. In particular, strong positive feedback leads to the emergence of two metastable electron temperature states in the millikelvin range. We use these states for efficient threshold detection of coherent 8.4 GHz microwave pulses containing approximately 200 photons on average, corresponding to 1.1 \mbox{ zJ} \approx 7.0 \mbox{ meV} of energy

    Static Ricci-flat 5-manifolds admitting the 2-sphere

    Get PDF
    We examine, in a purely geometrical way, static Ricci-flat 5-manifolds admitting the 2-sphere and an additional hypersurface-orthogonal Killing vector. These are widely studied in the literature, from different physical approaches, and known variously as the Kramer - Gross - Perry - Davidson - Owen solutions. The 2-fold infinity of cases that result are studied by way of new coordinates (which are in most cases global) and the cases likely to be of interest in any physical approach are distinguished on the basis of the nakedness and geometrical mass of their associated singularities. It is argued that the entire class of solutions has to be considered unstable about the exceptional solutions: the black string and soliton cases. Any physical theory which admits the non-exceptional solutions as the external vacuua of a collapsing object has to accept the possibility of collapse to zero volume leaving behind the weakest possible, albeit naked, geometrical singularities at the origin.Finally, it is pointed out that these types of solutions generalize, in a straightforward way, to higher dimensions.Comment: Generalize, in a straightforward way, to higher dimension

    The flatness problem and Λ\Lambda

    Full text link
    By way of a complete integration of the Friedmann equations, in terms of observables, it is shown that for the cosmological constant Λ>0\Lambda > 0 there exist non-flat FLRW models for which the total density parameter Ω\Omega remains ∌1\sim 1 throughout the entire history of the universe. Further, it is shown that in a precise quantitative sense these models are not finely tuned. When observations are brought to bear on the theory, and in particular the WMAP observations, they confirm that we live in just such a universe. The conclusion holds when the classical notion of Λ\Lambda is extended to dark energy.Comment: Final form to appear in Physical Review Letters. Further information at http://grtensor.org/Robertson

    Regional Differences in Presence of Shiga toxin-producing Escherichia coli Virulence-Associated Genes in the Environment in the North West and East Anglian regions of England

    Get PDF
    Shiga toxin-producing Escherichia coli is carried in the intestine of ruminant animals, and outbreaks have occurred after contact with ruminant animals or their environment. The presence of STEC virulence genes in the environment was investigated along recreational walking paths in the North West and East Anglia regions of England. In all, 720 boot sock samples from walkers’ shoes were collected between April 2013 and July 2014. Multiplex PCR was used to detect E. coli based on the amplification of the uidA gene and investigate STEC-associated virulence genes eaeA, stx1 and stx2. The eaeA virulence gene was detected in 45·5% of the samples, where stx1 and/or stx2 was detected in 12·4% of samples. There was a difference between the two regions sampled, with the North West exhibiting a higher proportion of positive boot socks for stx compared to East Anglia. In univariate analysis, ground conditions, river flow and temperature were associated with positive boot socks. The detection of stx genes in the soil samples suggests that STEC is present in the English countryside and individuals may be at risk for infection after outdoor activities even if there is no direct contact with animals. Significance and Impact of the Study: Several outbreaks within the UK have highlighted the danger of contracting Shiga toxin-producing Escherichia coli from contact with areas recently vacated by livestock. This is more likely to occur for STEC infections compared to other zoonotic bacteria given the low infectious dose required. While studies have determined the prevalence of STEC within farms and petting zoos, determining the risk to individuals enjoying recreational outdoor activities that occur near where livestock may be present is less researched. This study describes the prevalence with which stx genes, indicative of STEC bacteria, were found in the environment in the English countryside

    Dark Matter Substructure in Galactic Halos

    Full text link
    We use numerical simulations to examine the substructure within galactic and cluster mass halos that form within a hierarchical universe. Clusters are easily reproduced with a steep mass spectrum of thousands of substructure clumps that closely matches observations. However, the survival of dark matter substructure also occurs on galactic scales, leading to the remarkable result that galaxy halos appear as scaled versions of galaxy clusters. The model predicts that the virialised extent of the Milky Way's halo should contain about 500 satellites with circular velocities larger than Draco and Ursa-Minor i.e. bound masses > 10^8Mo and tidally limited sizes > kpc. The substructure clumps are on orbits that take a large fraction of them through the stellar disk leading to significant resonant and impulsive heating. Their abundance and singular density profiles has important implications for the existence of old thin disks, cold stellar streams, gravitational lensing and indirect/direct detection experiments.Comment: Astrophysical Journal Letters. 4 pages, latex. Simulation images and movies at http://star-www.dur.ac.uk:80/~moore

    Cosmological milestones and energy conditions

    Full text link
    Until recently, the physically relevant singularities occurring in FRW cosmologies had traditionally been thought to be limited to the "big bang", and possibly a "big crunch". However, over the last few years, the zoo of cosmological singularities considered in the literature has become considerably more extensive, with "big rips" and "sudden singularities" added to the mix, as well as renewed interest in non-singular cosmological events such as "bounces" and "turnarounds". In this talk, we present an extensive catalogue of such cosmological milestones, both at the kinematical and dynamical level. First, using generalized power series, purely kinematical definitions of these cosmological events are provided in terms of the behaviour of the scale factor a(t). The notion of a "scale-factor singularity" is defined, and its relation to curvature singularities (polynomial and differential) is explored. Second, dynamical information is extracted by using the Friedmann equations (without assuming even the existence of any equation of state) to place constraints on whether or not the classical energy conditions are satisfied at the cosmological milestones. Since the classification is extremely general, and modulo certain technical assumptions complete, the corresponding results are to a high degree model-independent.Comment: 8 pages, 1 table, conference proceedings for NEB XII conference in Nafplio, Greec

    Microscopic non-equilibrium theory of quantum well solar cells

    Full text link
    We present a microscopic theory of bipolar quantum well structures in the photovoltaic regime, based on the non-equilibrium Green's function formalism for a multi band tight binding Hamiltonian. The quantum kinetic equations for the single particle Green's functions of electrons and holes are self-consistently coupled to Poisson's equation, including inter-carrier scattering on the Hartree level. Relaxation and broadening mechanisms are considered by the inclusion of acoustic and optical electron-phonon interaction in a self consistent Born approximation of the scattering self energies. Photogeneration of carriers is described on the same level in terms of a self energy derived from the standard dipole approximation of the electron-photon interaction. Results from a simple two band model are shown for the local density of states, spectral response, current spectrum, and current-voltage characteristics for generic single quantum well systems.Comment: 10 pages, 6 figures; corrected typos, changed caption Fig. 1, replaced Fig.
    • 

    corecore