51 research outputs found

    Left Ventricular Systolic Dysfunction in Patients Diagnosed With Hypertrophic Cardiomyopathy During Childhood: Insights From the SHaRe Registry.

    Get PDF
    BACKGROUND: The development of left ventricular systolic dysfunction (LVSD) in hypertrophic cardiomyopathy (HCM) is rare but serious and associated with poor outcomes in adults. Little is known about the prevalence, predictors, and prognosis of LVSD in patients diagnosed with HCM as children. METHODS: Data from patients with HCM in the international, multicenter SHaRe (Sarcomeric Human Cardiomyopathy Registry) were analyzed. LVSD was defined as left ventricular ejection fraction <50% on echocardiographic reports. Prognosis was assessed by a composite of death, cardiac transplantation, and left ventricular assist device implantation. Predictors of developing incident LVSD and subsequent prognosis with LVSD were assessed using Cox proportional hazards models. RESULTS: We studied 1010 patients diagnosed with HCM during childhood (<18 years of age) and compared them with 6741 patients with HCM diagnosed as adults. In the pediatric HCM cohort, median age at HCM diagnosis was 12.7 years (interquartile range, 8.0-15.3), and 393 (36%) patients were female. At initial SHaRe site evaluation, 56 (5.5%) patients with childhood-diagnosed HCM had prevalent LVSD, and 92 (9.1%) developed incident LVSD during a median follow-up of 5.5 years. Overall LVSD prevalence was 14.7% compared with 8.7% in patients with adult-diagnosed HCM. Median age at incident LVSD was 32.6 years (interquartile range, 21.3-41.6) for the pediatric cohort and 57.2 years (interquartile range, 47.3-66.5) for the adult cohort. Predictors of developing incident LVSD in childhood-diagnosed HCM included age <12 years at HCM diagnosis (hazard ratio [HR], 1.72 [CI, 1.13-2.62), male sex (HR, 3.1 [CI, 1.88-5.2), carrying a pathogenic sarcomere variant (HR, 2.19 [CI, 1.08-4.4]), previous septal reduction therapy (HR, 2.34 [CI, 1.42-3.9]), and lower initial left ventricular ejection fraction (HR, 1.53 [CI, 1.38-1.69] per 5% decrease). Forty percent of patients with LVSD and HCM diagnosed during childhood met the composite outcome, with higher rates in female participants (HR, 2.60 [CI, 1.41-4.78]) and patients with a left ventricular ejection fraction <35% (HR, 3.76 [2.16-6.52]). CONCLUSIONS: Patients with childhood-diagnosed HCM have a significantly higher lifetime risk of developing LVSD, and LVSD emerges earlier than for patients with adult-diagnosed HCM. Regardless of age at diagnosis with HCM or LVSD, the prognosis with LVSD is poor, warranting careful surveillance for LVSD, especially as children with HCM transition to adult care

    Regional Variation in RBM20 Causes a Highly Penetrant Arrhythmogenic Cardiomyopathy

    Get PDF
    Background Variants in the cardiomyocyte-specific RNA splicing factor RBM20 have been linked to familial cardiomyopathy, but the causative genetic architecture and clinical consequences of this disease are incompletely defined. Methods and Results To define the genetic architecture of RBM20 cardiomyopathy, we first established a database of RBM20 variants associated with cardiomyopathy and compared these to variants observed in the general population with respect to their location in the RBM20 coding transcript. We identified 2 regions significantly enriched for cardiomyopathy-associated variants in exons 9 and 11. We then assembled a registry of 74 patients with RBM20 variants from 8 institutions across the world (44 index cases and 30 from cascade testing). This RBM20 patient registry revealed highly prevalent family history of sudden cardiac death (51%) and cardiomyopathy (72%) among index cases and a high prevalence of composite arrhythmias (including atrial fibrillation, nonsustained ventricular tachycardia, implantable cardiac defibrillator discharge, and sudden cardiac arrest, 43%). Patients harboring variants in cardiomyopathy-enriched regions identified by our variant database analysis were enriched for these findings. Further, these characteristics were more prevalent in the RBM20 registry than in large cohorts of patients with dilated cardiomyopathy and TTNtv cardiomyopathy and not significantly different from a cohort of patients with LMNA-associated cardiomyopathy. Conclusions Our data establish RBM20 cardiomyopathy as a highly penetrant and arrhythmogenic cardiomyopathy. These findings underline the importance of arrhythmia surveillance and family screening in this disease and represent the first step in defining the genetic architecture of RBM20 disease causality on a population level

    The emerging role of magnetic resonance imaging and multidetector computed tomography in the diagnosis of dilated cardiomyopathy

    Get PDF
    Magnetic resonance imaging and multidetector computed tomography are new imaging methods that have much to offer clinicians caring for patients with dilated cardiomyopathy. In this article we briefly describe the clinical, pathophysiological and histological aspects of dilated cardiomyopathy. Then we discuss in detail the use of both imaging methods for measurement of chamber size, global and regional function, for myocardial tissue characterisation, including myocardial viability assessment, and determination of arrhythmogenic substrate, and their emerging role in cardiac resynchronisation therapy

    Doubly heterozygous LMNA and TTN mutations revealed by exome sequencing in a severe form of dilated cardiomyopathy

    Get PDF
    Familial dilated cardiomyopathy (DCM) is a heterogeneous disease; although 30 disease genes have been discovered, they explain only no more than half of all cases; in addition, the causes of intra-familial variability in DCM have remained largely unknown. In this study, we exploited the use of whole-exome sequencing (WES) to investigate the causes of clinical variability in an extended family with 14 affected subjects, four of whom showed particular severe manifestations of cardiomyopathy requiring heart transplantation in early adulthood. This analysis, followed by confirmative conventional sequencing, identified the mutation p.K219T in the lamin A/C gene in all 14 affected patients. An additional variant in the gene for titin, p.L4855F, was identified in the severely affected patients. The age for heart transplantation was substantially less for LMNA:p.K219T/TTN:p.L4855F double heterozygotes than that for LMNA:p.K219T single heterozygotes. Myocardial specimens of doubly heterozygote individuals showed increased nuclear length, sarcomeric disorganization, and myonuclear clustering compared with samples from single heterozygotes. In conclusion, our results show that WES can be used for the identification of causal and modifier variants in families with variable manifestations of DCM. In addition, they not only indicate that LMNA and TTN mutational status may be useful in this family for risk stratification in individuals at risk for DCM but also suggest titin as a modifier for DCM

    Understanding the genetics of adult-onset dilated cardiomyopathy: what a clinician needs to know.

    No full text
    There is increasing understanding of the genetic basis to dilated cardiomyopathy and in this review, we offer a practical primer for the practising clinician. We aim to help all clinicians involved in the care of patients with dilated cardiomyopathy to understand the clinical relevance of the genetic basis of dilated cardiomyopathy, introduce key genetic concepts, explain which patients and families may benefit from genetic testing, which genetic tests are commonly performed, how to interpret genetic results, and the clinical applications of results. We conclude by reviewing areas for future research in this dynamic field

    Cardiocutaneous Features of Autosomal Dominant Desmoplakin-Associated Arrhythmogenic Cardiomyopathy

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/175341/2/CIRCGEN.120.003081.pdfPublished versionDescription of CIRCGEN.120.003081.pdf : Published versio
    corecore