17 research outputs found

    Data-Driven Analysis of EEG Reveals Concomitant Superficial Sleep During Deep Sleep in Insomnia Disorder

    Get PDF
    Study Objectives: The subjective suffering of people with Insomnia Disorder (ID) is insufficiently accounted for by traditional sleep classification, which presumes a strict sequential occurrence of global brain states. Recent studies challenged this presumption by showing concurrent sleep- and wake-type neuronal activity. We hypothesized enhanced co-occurrence of diverging EEG vigilance signatures during sleep in ID. Methods: Electroencephalography (EEG) in 55 cases with ID and 64 controls without sleep complaints was subjected to a Latent Dirichlet Allocation topic model describing each 30 s epoch as a mixture of six vigilance states called Topics (T), ranked from N3-related T1 and T2 to wakefulness-related T6. For each stable epoch we determined topic dominance (the probability of the most likely topic), topic co-occurrence (the probability of the remaining topics), and epoch-to-epoch transition probabilities. Results: In stable epochs where the N1-related T4 was dominant, T4 was more dominant in ID than in controls, and patients showed an almost doubled co-occurrence of T4 during epochs where the N3-related T1 was dominant. Furthermore, patients had a higher probability of switching from T1- to T4-dominated epochs, at the cost of switching to N3-related T2-dominated epochs, and a higher probability of switching from N2-related T3- to wakefulness-related T6-dominated epochs. Conclusion: Even during their deepest sleep, the EEG of people with ID express more N1-related vigilance signatures than good sleepers do. People with ID are moreover more likely to switch from deep to light sleep and from N2 sleep to wakefulness. The findings suggest that hyperarousal never rests in ID

    Combining Cardiac Monitoring with Actigraphy Aids Nocturnal Arousal Detection during Ambulatory Sleep Assessment in Insomnia

    Get PDF
    Study Objectives: The objective assessment of insomnia has remained difficult. Multisensory devices collecting heart rate (HR) and motion are regarded as the future of ambulatory sleep monitoring. Unfortunately, reports on altered average HR or heart rate variability (HRV) during sleep in insomnia are equivocal. Here, we evaluated whether the objective quantification of insomnia improves by assessing state-related changes in cardiac measures. Methods: We recorded electrocardiography, posture, and actigraphy in 33 people without sleep complaints and 158 patients with mild to severe insomnia over 4 d in their home environment. At the microscale, we investigated whether HR changed with proximity to gross (body) and small (wrist) movements at nighttime. At the macroscale, we calculated day-night differences in HR and HRV measures. For both timescales, we tested whether outcome measures were related to insomnia diagnosis and severity. Results: At the microscale, an increase in HR was often detectable already 60 s prior to as well as following a nocturnal chest, but not wrist, movement. This increase was slightly steeper in insomnia and was associated with insomnia severity, but future EEG recordings are necessary to elucidate whether these changes occur prior to or simultaneously with PSG-indicators of wakefulness. At the macroscale, we found an attenuated cardiac response to sleep in insomnia: patients consistently showed smaller day-night differences in HR and HRV. Conclusions: Incorporating state-related changes in cardiac features in the ambulatory monitoring of sleep might provide a more sensitive biomarker of insomnia than the use of cardiac activity averages or actigraphy alone

    ENIGMA-Sleep:Challenges, opportunities, and the road map

    Get PDF
    Neuroimaging and genetics studies have advanced our understanding of the neurobiology of sleep and its disorders. However, individual studies usually have limitations to identifying consistent and reproducible effects, including modest sample sizes, heterogeneous clinical characteristics and varied methodologies. These issues call for a large-scale multi-centre effort in sleep research, in order to increase the number of samples, and harmonize the methods of data collection, preprocessing and analysis using pre-registered well-established protocols. The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium provides a powerful collaborative framework for combining datasets across individual sites. Recently, we have launched the ENIGMA-Sleep working group with the collaboration of several institutes from 15 countries to perform large-scale worldwide neuroimaging and genetics studies for better understanding the neurobiology of impaired sleep quality in population-based healthy individuals, the neural consequences of sleep deprivation, pathophysiology of sleep disorders, as well as neural correlates of sleep disturbances across various neuropsychiatric disorders. In this introductory review, we describe the details of our currently available datasets and our ongoing projects in the ENIGMA-Sleep group, and discuss both the potential challenges and opportunities of a collaborative initiative in sleep medicine

    Selective Enhancement of Post-Sleep Visual Motion Perception by Repetitive Tactile Stimulation during Sleep

    Get PDF
    Tactile sensations can bias visual perception in the awake state while visual sensitivity is known to be facilitated by sleep. It remains unknown, however, whether the tactile sensation during sleep can bias the visual improvement after sleep. Here, we performed nap experiments in human participants (n = 56, 18 males, 38 females) to demonstrate that repetitive tactile motion stimulation on the fingertip during slow wave sleep selectively enhanced subsequent visual motion detection. The visual improvement was associated with slow wave activity. The high activation at the high beta frequency was found in the occipital electrodes after the tactile motion stimulation during sleep, indicating a visual-tactile cross-modal interaction during sleep. Furthermore, a second experiment (n = 14, 14 females) to examine whether a hand- or head-centered coordination is dominant for the interpretation of tactile motion direction showed that the biasing effect on visual improvement occurs according to the hand-centered coordination. These results suggest that tactile information can be interpreted during sleep, and can induce the selective improvement of post-sleep visual motion detection

    Restless REM Sleep Impedes Overnight Amygdala Adaptation

    No full text
    Animal studies show that insufficient silencing of the locus coeruleus (LC) during REM sleep impairs sleep-related brain plasticity. Restless REM sleep, a characteristic of several psychiatric disorders, likely reflects insufficient LC silencing. We investigated whether endogenous REM sleep interruptions interfere with overnight reorganization of limbic circuits in human volunteers with a wide range of insomnia severity, from no insomnia complaints to fulfilling community-sample criteria for insomnia disorder. We induced a self-conscious emotion during two functional MRI sessions and recorded sleep EEG in between. Amygdala reactivity decreased overnight in proportion to the total duration of consolidated REM sleep. Restless REM sleep, in contrast, impeded overnight amygdala adaptation. Using targeted memory reactivation with odors tagged to the self-conscious emotional stimulus, we could experimentally enhance both the favorable effect of consolidated REM sleep and the unfavorable effect of restless REM sleep. The findings reveal a maladaptive type of sleep, providing a target for interventions in mental disorders characterized by restless REM sleep. Sleep is considered to be good for about anything, but Wassing et al. reveal a maladaptive type of sleep: restless REM sleep impedes emotion processing in terms of amygdala reactivity. The findings provide a potential target for treatment of mental disorders characterized by restless REM sleep, including insomnia, depression, and anxiety disorders

    Optimizing actigraphic estimates of polysomnographic sleep features in insomnia disorder

    No full text
    © Sleep Research Society 2020. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail [email protected]. STUDY OBJECTIVES: Actigraphy is a useful tool for estimating sleep, but less accurately distinguishes sleep and wakefulness in patients with insomnia disorder (ID) than in good sleepers. Specific algorithm parameter settings have been suggested to improve the accuracy of actigraphic estimates of sleep onset or nocturnal sleep and wakefulness in ID. However, a direct comparison of how different algorithm parameter settings affect actigraphic estimates of sleep features has been lacking. This study aimed to define the optimal algorithm parameter settings for actigraphic estimates of polysomnographic sleep features in people suffering from ID and matched good sleepers. METHODS: We simultaneously recorded actigraphy and polysomnography without sleep diaries during 210 laboratory nights of people with ID (n = 58) and matched controls (CTRL) without sleep complaints (n = 56). We analyzed cross-validation errors using 150 algorithm parameter configurations and Bland-Altman plots of sleep features using the optimal settings. RESULTS: Optimal sleep onset latency and total sleep time (TST) errors were lower in CTRL (8.9 ± 2.1 and 16.5 ± 2.1 min, respectively) than in ID (11.7 ± 0.8 and 29.1 ± 3.4 min). The sleep-wake algorithm, a period duration of 5 min, and a wake sensitivity threshold of 40 achieved optimal results in ID and near-optimal results in CTRL. Bland-Altman plots were nearly identical for ID and controls for all common all-night sleep features except for TST. CONCLUSION: This systematic evaluation shows that actigraphic sleep feature estimation can be improved by using uncommon parameter settings. One specific parameter setting provides (near-)optimal estimation of sleep onset and nocturnal sleep across ID and controls

    Haunted by the past: old emotions remain salient in insomnia disorder.

    Get PDF
    Studies suggest that sleep supports persistent changes in the neuronal representation of emotional experiences such that they are remembered better and less distressful when recalled than when they were first experienced. It is conceivable that sleep fragmentation by arousals, a key characteristic of insomnia disorder, could hamper the downregulation of distress. In this study, we sought further support for the idea that insomnia disorder may involve a lasting deficiency to downregulate emotional distress. We used functional MRI in insomnia disorder (n = 27) and normal sleepers (n = 30) to identify how brain activation differs between novel and relived self-conscious emotions. We evaluated whether brain activity elicited by reliving emotional memories from the distant past resembles the activity elicited by novel emotional experiences more in insomnia disorder than in normal sleepers. Limbic areas were activated during novel shameful experiences as compared to neutral experiences in both normal sleepers and insomnia disorder. In normal sleepers, reliving of shameful experiences from the past did not elicit a limbic response. In contrast, participants with insomnia disorder recruited overlapping parts of the limbic circuit, in particular the dorsal anterior cingulate cortex, during both new and relived shameful experiences. The differential activity patterns with new and old emotions in normal sleepers suggest that reactivation of the long-term memory trace does not recruit the limbic circuit. The overlap of activations in insomnia disorder is in line with the hypothesis that the disorder involves a deficiency to dissociate the limbic circuit from the emotional memory trace. Moreover, the findings provide further support for a role of the anterior cingulate cortex in insomnia

    Functional connectivity correlates of attentional networks in insomnia disorder: A pilot study

    No full text
    Insomnia disorder has been associated with poor executive functioning. Functional imaging studies of executive functioning in insomnia are scarce and inconclusive. Because the Attentional Network Test relies on well-defined cortical networks and sensitively distinguishes different aspects of executive function, it might reveal brain functional alterations in relatively small samples of patients. The current pilot study assessed functional connectivity during the Attentional Network Test performed using magnetic resonance imaging in 12 participants with insomnia and 13 self-defined good sleepers. ANCOVAs were used to evaluate group differences in performance and functional connectivity in the regions of interest representing the attentional networks (i.e. alerting, orienting and executive control) at p < 0.05, uncorrected. During the orienting part, participants with insomnia showed weaker connectivity of the precentral gyrus with the superior parietal lobe (false discovery rate-corrected), while they showed stronger connectivity between premotor and visual regions. Individual differences in connectivity between premotor and visual regions correlated inversely with reaction time. Reaction times suggested more efficient executive control in participants with insomnia compared with good sleepers. During the executive control part, participants with insomnia showed stronger connectivity of thalamic parts of the arousal circuit with the middle frontal and the occipital gyri. Conversely, connectivity between the inferior and superior frontal gyri was weaker. Participants with insomnia seem to recruit more cortical resources in visuo-motor regions to orient attention than good sleepers do, and seem to have enhanced executive control that relates to stronger connectivity of arousal-related thalamic areas. This latter result should be treated with caution and requires confirmation

    Functional connectivity correlates of attentional networks in insomnia disorder: A pilot study

    Get PDF
    Insomnia disorder has been associated with poor executive functioning. Functional imaging studies of executive functioning in insomnia are scarce and inconclusive. Because the Attentional Network Test relies on well-defined cortical networks and sensitively distinguishes different aspects of executive function, it might reveal brain functional alterations in relatively small samples of patients. The current pilot study assessed functional connectivity during the Attentional Network Test performed using magnetic resonance imaging in 12 participants with insomnia and 13 self-defined good sleepers. ANCOVAs were used to evaluate group differences in performance and functional connectivity in the regions of interest representing the attentional networks (i.e. alerting, orienting and executive control) at p < 0.05, uncorrected. During the orienting part, participants with insomnia showed weaker connectivity of the precentral gyrus with the superior parietal lobe (false discovery rate-corrected), while they showed stronger connectivity between premotor and visual regions. Individual differences in connectivity between premotor and visual regions correlated inversely with reaction time. Reaction times suggested more efficient executive control in participants with insomnia compared with good sleepers. During the executive control part, participants with insomnia showed stronger connectivity of thalamic parts of the arousal circuit with the middle frontal and the occipital gyri. Conversely, connectivity between the inferior and superior frontal gyri was weaker. Participants with insomnia seem to recruit more cortical resources in visuo-motor regions to orient attention than good sleepers do, and seem to have enhanced executive control that relates to stronger connectivity of arousal-related thalamic areas. This latter result should be treated with caution and requires confirmation

    Combining cardiac monitoring with actigraphy aids nocturnal arousal detection during ambulatory sleep assessment in insomnia

    Get PDF
    Study Objectives: The objective assessment of insomnia has remained difficult. Multisensory devices collecting heart rate (HR) and motion are regarded as the future of ambulatory sleep monitoring. Unfortunately, reports on altered average HR or heart rate variability (HRV) during sleep in insomnia are equivocal. Here, we evaluated whether the objective quantification of insomnia improves by assessing state-related changes in cardiac measures. Methods: We recorded electrocardiography, posture, and actigraphy in 33 people without sleep complaints and 158 patients with mild to severe insomnia over 4 d in their home environment. At the microscale, we investigated whether HR changed with proximity to gross (body) and small (wrist) movements at nighttime. At the macroscale, we calculated day-night differences in HR and HRV measures. For both timescales, we tested whether outcome measures were related to insomnia diagnosis and severity. Results: At the microscale, an increase in HR was often detectable already 60 s prior to as well as following a nocturnal chest, but not wrist, movement. This increase was slightly steeper in insomnia and was associated with insomnia severity, but future EEG recordings are necessary to elucidate whether these changes occur prior to or simultaneously with PSG-indicators of wakefulness. At the macroscale, we found an attenuated cardiac response to sleep in insomnia: patients consistently showed smaller day-night differences in HR and HRV. Conclusions: Incorporating state-related changes in cardiac features in the ambulatory monitoring of sleep might provide a more sensitive biomarker of insomnia than the use of cardiac activity averages or actigraphy alone
    corecore