34 research outputs found

    Vulnerability of Subsistence Systems Due to Social and Environmental Change: A Case Study in the Yukon-Kuskokwim Delta, Alaska

    Get PDF
    Arctic Indigenous communities have been classified as highly vulnerable to climate change impacts. The remoteness of Arctic communities, their dependence upon local species and habitats, and the historical marginalization of Indigenous peoples enhances this characterization of vulnerability. However, vulnerability is a result of diverse historical, social, economic, political, cultural, institutional, natural resource, and environmental conditions and processes and is not easily reduced to a single metric. Furthermore, despite the widespread characterization of vulnerability, Arctic Indigenous communities are extremely resilient as evidenced by subsistence institutions that have been developed over thousands of years. We explored the vulnerability of subsistence systems in the Cup’ik village of Chevak and Yup’ik village of Kotlik through the lens of the strong seasonal dimensions of resource availability. In the context of subsistence harvesting in Alaska Native villages, vulnerability may be determined by analyzing the exposure of subsistence resources to climate change impacts, the sensitivity of a community to those impacts, and the capacity of subsistence institutions to absorb these impacts. Subsistence resources, their seasonality, and perceived impacts to these resources were investigated via semi-structured interviews and participatory mapping-calendar workshops. Results suggest that while these communities are experiencing disproportionate impacts of climate change, Indigenous ingenuity and adaptability provide an avenue for culturally appropriate adaptation strategies. However, despite this capacity for resiliency, rapid socio-cultural changes have the potential to be a barrier to community adaptation and the recent, ongoing shifts in seasonal weather patterns may make seasonally specific subsistence adaptations to landscape particularly vulnerable.Les collectivités autochtones de l’Arctique sont classées comme étant fortement vulnérables aux incidences du changement climatique. L’éloignement des collectivités de l’Arctique, leur dépendance des espèces et des habitats locaux de même que la marginalisation historique des peuples autochtones intensifient cette vulnérabilité. Toutefois, la vulnérabilité est le résultat de conditions et de processus divers sur le plan historique, social, économique, politique, culturel, institutionnel, environnemental et des ressources naturelles. Il est difficile d’attribuer la vulnérabilité à un seul aspect. Malgré cette vaste caractérisation de la vulnérabilité, les collectivités autochtones de l’Arctique sont extrêmement résilientes, comme en attestent les modes de subsistance qui se sont développés au fil de milliers d’années. Nous avons exploré la vulnérabilité des systèmes de subsistance du village cup’ik de Chevak et du village yup’ik de Kotlik du point de vue des dimensions saisonnières fortes de la disponibilité des ressources. Dans le contexte des récoltes de subsistance des villages autochtones de l’Alaska, la vulnérabilité peut être déterminée au moyen de l’exposition des ressources de subsistance aux incidences du changement climatique, de la sensibilité d’une collectivité à ces incidences et de la capacité des institutions de subsistance à absorber ces incidences. Les ressources de subsistance, leur saisonnalité et les incidences perçues de ces ressources ont été étudiées au moyen d’entrevues semi-structurées et d’ateliers participatifs d’établissement de calendrier. Selon les résultats, bien que ces collectivités soient aux prises avec des incidences disproportionnées de changement climatique, l’ingéniosité et l’adaptabilité des Autochtones pavent le chemin à des stratégies d’adaptation convenant à leur culture. Cependant, malgré cette capacité de résilience, les changements socioculturels accélérés ont la possibilité de faire obstacle à l’adaptation collective, sans compter que la variation continue des tendances climatiques saisonnières peut rendre les adaptations de subsistance saisonnières au paysage particulièrement vulnérables

    The U.S. water data gap: A survey of state-level water data platforms to inform the development of a national water portal

    Get PDF
    Water data play a crucial role in the development and assessment of sustainable water management strategies. Water resource assessments are needed for the planning, management, and the evaluation of current practices. They require environmental, climatic, hydrologic, hydrogeologic, industrial, agricultural, energy, and socioeconomic data to assess and accurately project the supply of and demand for water services. Given this context, we provide a review of the current state of publicly available water data in the United States. While considerable progress has been made in data science and model development in recent years, data limitations continue to hamper analytics. A brief overview of the water data sets available at the federal level is used to highlight the gaps in readily accessible water data in the United States. Then, we present a systematic review of 275 websites that provide water information collected at the state level. Data platforms are evaluated based on content (ground and surface water, water quality, and water use information) along with the analytical and exploratory tools that are offered. Wev discuss the degree to which existing state-level data sets could enrich the data available from federal sources and review some recent technological developments and initiatives that may modernize water data. We argue that a national water data portal, more comprehensive than the U.S. Energy Information Administration, addressing the significant gaps and centralizing water data is critical. It would serve to quantify the risks emerging from growing water stress and aging infrastructure and to better inform water management and investment decisions

    MOR2 ecological data

    No full text
    Those listed as authors substantially designed instruments and data collection protocols, directly supervised data collection and collected data, designed database, and oversaw data entry and quality checkingAdditional acknowledgements (People listed assisted with field data collection, data entry, and establishment of on-line data archive): The following individuals helped with data collection or data entry and consulting: Adyabadam G., Ariunsukh, Ariunzaya, Arren A., Atarbold, Baagii, Bolormaa, Batkhishig B., Bayarmaa B., Brandon B., Bulgamaa, Bulgana U., Byambaa, D., Dejidmaa Ts., Erica C., Enkhjargal, Enkmunkh B., Gandiimaa, Ganjargal, Gankhuyag L., Gantsogt, Itgelt N., Jargal Ya., Jay A., Justin V., Khishigdorj, Khishigjargal B., Lkhagvasuren D., Lkhagvasuren, Lkhamdulam, Narangerel, Naransogt, Niah V., Odgarav J., Oyuntsetseg, Oyunsuvd S., Pagmajav D., Retta B., Sainchuluun A., Sergelen M., Solongo, Sophia L., Sukhbaatar, Sumjidmaa, Tsengelmaa L., Tserendash S., Tsogtbaatar J., Tumee, Turbagana, Undarmaa J., Unurzul A., Urlee, Vandandorj S., Zolzaya, other members of our great field teams, local government officers and supporters. The following individuals guided establishment of on-line data archive at Colorado State University: Tobin Magle, Mara Sedlins, Daniel DraperThe following institutions helped and participated in the project: Nutag Action Research Institute, Institute of Geo-Ecology, Research Institute of Animal Husbandry, Mongolian Society for Range Management, German Technical Cooperation (GTZ) , Institute of Botany, Institute of Meteorology and Hydrology, Institute of Chemistry and Chemical Technology, Mongolian State Agricultural University, Center for Ecosystem Studies, Texas A&M University and Colorado State University.MOR2 ecological data were collected from 143 winter camps at three different grazing distances in four different ecological zones. Ecological field data includes soil pit descriptions, soul surface data including resource retention class and soil redistribution class data; site environmental data (i.e. metadata), and vegetation data including plant biomass by functional group and plant cover by species.The following organizations provided funding for data collection, entry or analysis: National Science Foundation BCS-1011801, The World Bank, US AID, American Association of University Women, Open Society Institute, Center for Collaborative Conservation, Colorado State University

    Geospatial Visual Analytics

    No full text

    Variable contribution to training gain (a) and area under curve (b).

    No full text
    <p>Gray bars indicate how well the model performs with only that variable, versus a full model. Values shown are averaged over 100 replicate MaxEnt model runs.</p

    Comparison of mean annual temperature (MAT) at three spatial resolutions (4 km, 1 km, and 90 m) for climate normals 1981–2010 in Rocky Mountain National Park, Colorado.

    No full text
    <p>Data Sources: PRISM Climate Group (<a href="http://www.prism.oregonstate.edu/" target="_blank">http://www.prism.oregonstate.edu/</a>) WorldClim (<a href="http://www.worldclim.org/" target="_blank">http://www.worldclim.org/</a>) and ClimateWNA (<a href="http://climatewna.com/" target="_blank">http://climatewna.com/</a>).</p
    corecore