7,752 research outputs found

    Biochemical and immunochemical analysis of the arrangement of connexin43 in rat heart gap junction membranes

    Get PDF
    A 43 × 10^3 M_r protein (designated connexin43 or Cx43) is a major constituent of heart gap junctions. The understanding of its arrangement in junctional membranes has been extended by means of site-directed antibodies raised against synthetic peptides of Cx43. These represent part of the first extracellular loop (EL-46), the cytoplasmic loop (CL-100), the second extracellular loop (EL-186) and carboxy-terminal sequences (CT-237 and CT-360). All of the antibodies raised reacted with their respective peptides and the Cx43 protein on Western blots. By immunoelectron microscopy two of the antibodies (CL-100 and CT-360) were shown to label the cytoplasmic surface of isolated gap junction membranes. Immunofluorescent labeling at locations of neonatal cardiac myocyte-myocyte apposition required an alkali/urea treatment when the EL-46 and EL-186 antibodies were used. Immunoblot analysis of endoproteinase Lys-C-digested gap junctions revealed that the Cx43 protein passed through the lipid bilayer four times. Alkaline phosphatase digestion of isolated junctions was used to show that the CT-360 antibody recognized many phosphorylated forms of Cx43. Our results unequivocally confirm models of the organization of Cx43 that were based on a more limited set of data and a priori considerations of the sequence

    Particle Dark Energy

    Full text link
    We explore the physics of a gas of particles interacting with a condensate that spontaneously breaks Lorentz invariance. The equation of state of this gas varies from 1/3 to less than -1 and can lead to the observed cosmic acceleration. The particles are always stable. In our particular class of models these particles are fermions with a chiral coupling to the condensate. They may behave as relativistic matter at early times, produce a brief period where they dominate the expansion with w<0 today, and behave as matter at late time. There are no small parameters in our models, which generically lead to dark energy clustering and, depending on the choice of parameters, smoothing of small scale power.Comment: 8 pages, 5 figures; minor update with added refs; version appearing in Phys. Rev.

    The Effects of PVP(Fe(III)) Catalyst on Polymer Molecular Weight and Gene Delivery via Biodegradable Cross-Linked Polyethylenimine

    Get PDF
    The original publication is available at www.springerlink.comPurpose Crosslinked, degradable derivatives of low-molecular-weight polyethylenimine (PEI) are relatively efficient and non-cytotoxic gene delivery agents. To further investigate these promising materials, a new synthetic approach was developed using a poly(4-vinylpyridine)-supported Fe(III) catalyst (PVP(Fe(III))) that provides more facile synthesis and enhanced control of polymer molecular weight. Methods Biodegradable polymers (D.PEI) comprising 800-Da PEI crosslinked with 1,6-hexanediol diacrylate and exhibiting molecular weights of 1.2, 6.2, and 48 kDa were synthesized utilizing the PVP(Fe(III)) catalyst. D.PEI/DNA polyplexes were characterized using gel retardation, ethidium bromide exclusion, heparan sulfate displacement, and dynamic light scattering. In vitro transfection, cellular uptake, and cytotoxicity of the polyplexes were tested in human cervical cancer cells (HeLa) and human breast cancer cells (MDA-MB-231). Results D.PEIs tightly complexed plasmid DNA and formed 320- to 440-nm diameter polyplexes, similar to those comprising non-degradable, 25-kDa, branched PEI. D.PEI polyplexes mediated 2- to 5-fold increased gene delivery efficacy compared to 25-kDa PEI and exhibited 20% lower cytotoxicity in HeLa and no toxicity in MDA-MB-231. In addition, 2- to 7-fold improved cellular uptake of DNA was achieved with D.PEI polyplexes. Conclusions PVP(Fe(III)) catalyst provided a more controlled synthesis of D.PEIs, and these materials demonstrated improved in vitro transfection efficacy and reduced cytotoxicity

    Direct calculation of the hard-sphere crystal/melt interfacial free energy

    Get PDF
    We present a direct calculation by molecular-dynamics computer simulation of the crystal/melt interfacial free energy, γ\gamma, for a system of hard spheres of diameter σ\sigma. The calculation is performed by thermodynamic integration along a reversible path defined by cleaving, using specially constructed movable hard-sphere walls, separate bulk crystal and fluid systems, which are then merged to form an interface. We find the interfacial free energy to be slightly anisotropic with γ\gamma = 0.62±0.01\pm 0.01, 0.64±0.01\pm 0.01 and 0.58±0.01kBT/σ2\pm 0.01 k_BT/\sigma^2 for the (100), (110) and (111) fcc crystal/fluid interfaces, respectively. These values are consistent with earlier density functional calculations and recent experiments measuring the crystal nucleation rates from colloidal fluids of polystyrene spheres that have been interpreted [Marr and Gast, Langmuir {\bf 10}, 1348 (1994)] to give an estimate of γ\gamma for the hard-sphere system of 0.55±0.02kBT/σ20.55 \pm 0.02 k_BT/\sigma^2, slightly lower than the directly determined value reported here.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    A Keck/HIRES Doppler Search for Planets Orbiting Metal-Poor Dwarfs. I. Testing Giant Planet Formation and Migration Scenarios

    Get PDF
    We describe a high-precision Doppler search for giant planets orbiting a well-defined sample of metal-poor dwarfs in the field. This experiment constitutes a fundamental test of theoretical predictions which will help discriminate between proposed giant planet formation and migration models. We present here details on the survey as well as an overall assessment of the quality of our measurements, making use of the results for the stars that show no significant velocity variation.Comment: 25 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Pyomo - Optimization Modeling in Python

    Get PDF
    INFORMS Journal of Computing, November 2012The article of record as published may be located at http://dx.doi.org/10.1287/ijoc.2012.4.brIf a simple, intuitive tool for a task exists, the task is done more often, by more people. This basic principle is as true for gardening and gadgets, as it is for computation in operations research. The book, Pyomo { Optimization Modeling in Python, documents a simple, yet versatile tool for modeling and solving optimization problems

    Line Broadening in Field Metal-poor Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report 349 radial velocities for 45 metal-poor field red giant and red horizontal branch stars. We have have identified one new spectroscopic binary, HD 4306, and one possible such system, HD 184711. We also report 57 radial velocities for 11 of the 91 stars reported on previously by Carney et al. (2003). As was found in the previous study, radial velocity "jitter" is present in many of the most luminous stars. Excluding stars showing spectroscopic binary orbital motion, all 7 of the red giants with M(V) <= -2.0 display jitter, as well as 3 of the 14 stars with -2.0 <= M(V) <= -1.4. We have also measured line broadening in all of the new spectra, using synthetic spectra as templates. The most luminous red giants show significant line broadening, as do many of the red horizontal branch stars, and we discuss briefly possible causes.Comment: To appear in the Astronomical Journa

    Dense Molecular Gas In A Young Cluster Around MWC 1080 -- Rule Of The Massive Star

    Full text link
    We present CS J=21J = 2 \to 1, 13^{13}CO J=10J = 1 \to 0, and C18^{18}O J=10J = 1 \to 0, observations with the 10-element Berkeley Illinois Maryland Association (BIMA) Array toward the young cluster around the Be star MWC 1080. These observations reveal a biconical outflow cavity with size \sim 0.3 and 0.05 pc for the semimajor and semiminor axis and \sim 45\arcdeg position angle. These transitions trace the dense gas, which is likely the swept-up gas of the outflow cavity, rather than the remaining natal gas or the outflow gas. The gas is clumpy; thirty-two clumps are identified. The identified clumps are approximately gravitationally bound and consistent with a standard isothermal sphere density, which suggests that they are likely collapsing protostellar cores. The gas kinematics suggests that there exists velocity gradients implying effects from the inclination of the cavity and MWC 1080. The kinematics of dense gas has also been affected by either outflows or stellar winds from MWC 1080, and lower-mass clumps are possibly under stronger effects from MWC 1080 than higher-mass clumps. In addition, low-mass cluster members tend to be formed in the denser and more turbulent cores, compared to isolated low-mass star-forming cores. This results from contributions of nearby forming massive stars, such as outflows or stellar winds. Therefore, we conclude that in clusters like the MWC 1080 system, effects from massive stars dominate the star-forming environment in both the kinematics and dynamics of the natal cloud and the formation of low-mass cluster members. This study provides insights into the effects of MWC 1080 on its natal cloud, and suggests a different low-mass star forming environment in clusters compared to isolated star formation.Comment: 42 pages, 5 tables, and 13 figures, accepted for publication in Ap

    Calculation of the interfacial free energy of a fluid at a static wall by Gibbs–Cahn integration

    Get PDF
    This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/132/20/10.1063/1.3428383.The interface between a fluid and a static wall is a useful model for a chemically heterogeneous solid-liquid interface. In this work, we outline the calculation of the wall-fluid interfacial free energy(γwf) for such systems using molecular simulation combined with adsorptionequations based on Cahn’s extension of the surface thermodynamics of Gibbs. As an example, we integrate such an adsorptionequation to obtain γwf as a function of pressure for a hard-sphere fluid at a hard wall. The results so obtained are shown to be in excellent agreement in both magnitude and precision with previous calculations of this quantity, but are obtained with significantly lower computational effort
    corecore