research

Biochemical and immunochemical analysis of the arrangement of connexin43 in rat heart gap junction membranes

Abstract

A 43 × 10^3 M_r protein (designated connexin43 or Cx43) is a major constituent of heart gap junctions. The understanding of its arrangement in junctional membranes has been extended by means of site-directed antibodies raised against synthetic peptides of Cx43. These represent part of the first extracellular loop (EL-46), the cytoplasmic loop (CL-100), the second extracellular loop (EL-186) and carboxy-terminal sequences (CT-237 and CT-360). All of the antibodies raised reacted with their respective peptides and the Cx43 protein on Western blots. By immunoelectron microscopy two of the antibodies (CL-100 and CT-360) were shown to label the cytoplasmic surface of isolated gap junction membranes. Immunofluorescent labeling at locations of neonatal cardiac myocyte-myocyte apposition required an alkali/urea treatment when the EL-46 and EL-186 antibodies were used. Immunoblot analysis of endoproteinase Lys-C-digested gap junctions revealed that the Cx43 protein passed through the lipid bilayer four times. Alkaline phosphatase digestion of isolated junctions was used to show that the CT-360 antibody recognized many phosphorylated forms of Cx43. Our results unequivocally confirm models of the organization of Cx43 that were based on a more limited set of data and a priori considerations of the sequence

    Similar works