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The interface between a fluid and a static wall is a useful model for a chemically heterogeneous
solid-liquid interface. In this work, we outline the calculation of the wall-fluid interfacial free energy
��wf� for such systems using molecular simulation combined with adsorption equations based on
Cahn’s extension of the surface thermodynamics of Gibbs. As an example, we integrate such an
adsorption equation to obtain �wf as a function of pressure for a hard-sphere fluid at a hard wall. The
results so obtained are shown to be in excellent agreement in both magnitude and precision with
previous calculations of this quantity, but are obtained with significantly lower computational
effort. © 2010 American Institute of Physics. �doi:10.1063/1.3428383�

I. INTRODUCTION

The solid-liquid interfacial free energy, �sl, is a control-
ling parameter for a number of technologically important
phenomena, including crystal growth and nucleation, den-
dritic morphology, and wetting.1–3 However, �sl is difficult to
measure experimentally and accurate direct measurements
only exist for a few materials. The dearth of experimental
data has increased the importance of molecular modeling for
solid-liquid interfaces, spurring the development of methods
for deducing �sl from atomistic simulations, for example,
cleaving methods4,5 and the capillary fluctuation method.6

Such methods have been used to determine �sl for a number
of systems ranging from idealized model systems �for ex-
ample, hard spheres,5,7,8 inverse power potentials,7 and
Lennard-Jones potentials9–11� to systems modeling real ma-
terials �e.g., metals,6,12–15 metal alloys,16 and molecular
materials17,18�.

The studies outlined above all involve the interface be-
tween a fluid and a fully dynamic and interacting solid phase.
For chemically heterogeneous interfaces, however, a com-
mon approximation is to model the solid phase as a static
surface or “wall” that functions as an external field confining
the capillary fluctuations. For the calculation of the wall-fluid
interfacial free energy, �wf, for such systems either thermo-
dynamic or mechanical techniques can be employed. Ther-
modynamic methods, such as thermodynamic integration us-
ing cleaving potentials19,20 and grand canonical transition
matrix Monte Carlo,21 can be quite precise for wall-fluid
systems; however, this precision comes at significant compu-
tational expense. Mechanical approaches rely on the equality
of surface free energy and surface tension, which is true for
a fluid-solid interface as long as the solid is treated as a static
external field and not a fully interacting elastic system.22 In
this method,23–26 �wf is determined from simulation using the
Kirkwood–Buff equation27 for the surface tension,

�wf = �
−�

�

�pn�z� − pt�z��dz , �1�

where pn and pt are the normal and tangential components of
the pressure tensor and z is the direction normal to the wall.
Typically, because local pressure fluctuations in simulations
are often large and Eq. �1� represents the difference between
two pressure measurements �a numerical procedure that
magnifies relative error�, considerable computational effort28

is required to produce acceptable precision using Eq. �1�.
In this work, we discuss the determination of interfacial

free energies for a fluid in contact with a static wall through
the integration of adsorption equations based on Cahn’s
reformulation29 of the thermodynamics of Gibbs.30 Such ap-
proaches were recently successfully applied by Frolov and
Mishin31,32 to solid-vapor and solid-liquid interfacial free en-
ergies of metals and metal alloys and by Laird et al. to the
Lennard-Jones solid-liquid interface.33 As a demonstration,
we apply this formalism to the calculation of the interfacial
free energy of a hard-sphere fluid at a hard wall.

II. METHOD: GIBBS–CAHN INTEGRATION
FOR A FLUID AT A STATIC SURFACE

The derivation of adsorption equations for fluids at a
static surface follows from Cahn’s generalization of the in-
terfacial thermodynamics of Gibbs.29,32 For a system consist-
ing of an r-component fluid at a static surface, the total
Gibbs energy is given by

G = E − TS + PV , �2�

where P, T, E, S, and V are the pressure, temperature, inter-
nal energy, entropy, and volume, respectively. In the absence
of a surface, the Gibbs energy would be equal to that of the
bulk phasea�Electronic mail: blaird@ku.edu.
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Gb = �
i=1

r

�iNi, �3�

where Ni and �i are the number and chemical potential of
particles of type i, respectively. The interfacial free energy,
�, is given by the difference �per unit area� between the
Gibbs energy of the system with the interface and that of the
bulk,

�A = G − Gb = E − TS + PV − �
i=1

r

�iNi. �4�

The differential of this quantity is

d��A� = dE − TdS − SdT + PdV + VdP − �
i=1

r

�idNi

− �
i=1

r

Nid�i. �5�

The differential for the energy is given by

dE = TdS − PdV + �
i=1

r

�idNi. �6�

Substituting Eq. �6� into Eq. �5� gives

d��A� = − SdT + VdP − �
i=1

r

Nid�i. �7�

For a fluid at a static surface, in addition to Eq. �7�, we have
the Gibbs–Duhem equation for the bulk fluid,

0 = − SfdT + VfdP − �
i=1

r

Ni
fd�i

f , �8�

where the superscript f denotes the fluid.
Equations �7� and �8� form a set of two simultaneous

linear equations. Using Cramer’s rule, Cahn showed that one
of the differentials dx �e.g., dP� can be eliminated to give

Ad� = − �S/X�dT + �V/X�dP − �
i=1

r

�Ni/X�d�i, �9�

where X is the variable conjugate to the displacement dx and
the notation �Y /X� is defined as

�Y/X� =
1

Xf� Y X

Y f Xf � , �10�

where, again, f denotes bulk fluid and quantities without this
designation refer to the full inhomogeneous system �fluid
+interface�. In writing Eq. �9�, we have also used the fact
that the area, A, of the static surface is constant so that
d��A�=Ad�.

For a single component system �r=1�, a convenient
choice is X=N. With this choice the d� term in Eq. �9� is
identically zero �because the determinant in Eq. �10� is zero
if two columns are identical�, giving

Ad� = − �S/N�dT + �V/N�dP . �11�

If we define the interfacial excess entropy and volume �per
unit area� for this choice of X by

�N =
1

A
�S/N� =

1

A
�S − Sf

N

Nf
	 , �12�

vN =
1

A
�V/N� =

1

A
�V − Vf

N

Nf
	 , �13�

then Eq. �11� becomes

d� = − �NdT + vNdP , �14�

where subscript N denotes that these excesses are calculated
with the choice X=N.

The use of Eq. �14� requires knowledge of the excess
interfacial entropy, �N, which is not directly obtainable from
simulation. For the current purposes, there are two ways to
remedy this problem. One is to replace �N in Eq. �14� with
other more readily available quantities using the general
relation29,32

� = 
�E/X� − T�S/X� + p�V/X� − �
i=1

r

�i�Ni/X��/A

= eX − T�X + pvX − �
i=1

r

�i�i,X, �15�

where eX, �X, vX, and �i,X are the excess interfacial energy,
entropy, volume, and number of particles of type i corre-
sponding to the particular choice of X. For a single compo-
nent system with X=N, Eq. �15� becomes

�N =
eN + pvN − �

T
=

hN − �

T
, �16�

where we have defined the excess interfacial enthalpy, hN

=eN+ pvN. This expression for �N contains the target quantity
�; however, if the integration of Eq. �14� is performed start-
ing at a reference temperature and pressure for which � is
known, then the initial value of �N can be calculated from
Eq. �16�. If one does not know the value of � at any T and P,
then this procedure is, of course, not useful.

A more practical approach to this problem was proposed
by Baidakov et al.34 for liquid-vapor interfaces and, in a
more general context, by Frolov and Mishin.31,32 From Eq.
�14�, we have that �N=−��� /�T�P. Thus, Eq. �15� for a
single component system with X=N becomes

� + T� ��

�T
	

P

= eN + pvN = hN. �17�

The left hand side of Eq. �17� is equal to −T2���� /T� /�T�P so
Eq. �17� becomes

� ���/T�
�T



P

= −
hN

T2 , �18�

from which Eq. �14� can be rewritten as
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d��/T� = −
hN

T2 dT +
vN

T
dP , �19�

which relates changes in � to the more readily obtainable
excess interfacial enthalpy. The steps leading to Eq. �19� are
analogous to the standard derivation of the Gibbs–Helmholtz
equation in thermodynamics.35 Note that Eqs. �14� and �19�
are not derivable from the standard Gibbs surface thermody-
namics because the use of a Gibbs dividing surface in that
formalism implies zero excess volume by definition. In this
respect Cahn’s extension of the Gibbs formalism is more
general.

Another possible choice for a single component system
is to set X=V, this gives

d� = − �VdT + �Vd� . �20�

The Gibbs–Helmholtz form of this equation can be derived
using the procedure described in the previous paragraph,

d��/T� = −
eV − ��V

T2 dT −
�V

T
d� . �21�

Here �V, eV, and �V are the excess entropy, energy, and num-
ber of particles corresponding to the choice X=V.

For a multicomponent system, the choice of X=V gives

d� = − �VdT − �
i=1

r

�i,Vd�i, �22�

where �i,V= �Ni /V� is the interfacial excess number of type i
particles for X=V and �i is the chemical potential of particle
type i. If there is no change in temperature �dT=0�, Eq. �22�
becomes

d��T = − �
i=1

r

�i,Vd�i, �23�

which is the usual Gibbs adsorption isotherm.22 Alterna-
tively, we can choose X=N1, which gives

d� = − �N1
dT + vN1

dP − �
i=2

r

�i,N1
d�i. �24�

As in the single component cases considered above, the dif-
ferentials can be converted to the Gibbs–Helmholtz form to
replace the dependence on the excess interfacial entropy with
one on more readily obtainable interfacial excess quantities.

Each one of the adsorption differentials derived above
can be integrated to give the change in the interfacial free
energy, ��, along any chosen path in the space of the inten-
sive variables T, P, and �Ni�. The determination of the value
of � itself requires then that its value be known a priori at
one reference point on this path, for example, through the
use of one of the thermodynamic or mechanical integration
techniques described above. Thus, these methods will be
most useful when � for a specific system is needed for sev-
eral points in thermodynamic space. The use of a computa-
tionally intensive direct method would only be required at
one of the points, whereas the value of � at all other points
could be obtained by integration of the Gibbs–Cahn adsorp-
tion equations, which is much less computationally intensive.

In Sec. III we examine the use of an adsorption equation in
the calculation of �wf for a hard-sphere fluid at a hard, struc-
tureless wall.

III. APPLICATION TO A HARD SPHERE FLUID
AT A HARD WALL

The best studied example of a fluid at a static surface is
a single component hard-sphere fluid at a planar, structure-
less hard wall. For this system, the interparticle, u�r�, and
wall-particle potential energies, uwall�z�, are

u�r� = 
� , r � �

0, r 	 � ,
� �25�

uwall�z� = 
� , z � �/2
0, z 	 �/2,

� �26�

where � is the diameter of the particles, r is the distance
between two particle centers, and z is the distance between a
particle center and the wall position. In 1984, Henderson and
van Swol used molecular-dynamics �MD� simulation to cal-
culate �wf for this system mechanically using Eq. �1�, al-
though the precision of their results was quite low. Heni and
Löwen36 later improved upon the precision of results using
the Monte Carlo simulation and thermodynamic integration
with square barrier and triangular cleaving potentials to ob-
tain �wf at several densities up to the solid-liquid coexistence
density. More recently, Fortini and co-worker20,37 employed
an exponential barrier function for the Monte Carlo thermo-
dynamic integration to determine �wf at several pressures just
below coexistence. Their results were consistent with those
of Heni and Löwen, but were significantly more precise. Us-
ing an improved mechanical approach, De Miguel and
Jackson28 obtained results for �wf for this system that al-
though they were found to agree with the theoretical predic-
tions of scaled particle theory �SPT�,36,38,39 they were signifi-
cantly smaller than those of Fortini et al. at densities near
coexistence. The most recent calculations are those of Laird
and Davidchack19 who used thermodynamic integration with
a cleaving wall approach to calculate �wf over the full fluid
range of densities. These results, which were reported to
have a relative precision of about 0.1%, were in full quanti-
tative agreement with those of Fortini et al., even at the
highest densities. In addition, the cleaving wall method al-
lowed for the direct evaluation of �wf at the solid-fluid coex-
istence fluid density 
 f

�=
 f�
3=0.9393, whereas in the previ-

ous approaches this value could only be obtained by
extrapolation from lower densities.

Both the mechanical and thermodynamic approaches to
the calculation of �wf for the hard-sphere fluid/wall system
require significant computational effort to achieve reasonable
precision. In what follows, we use the Gibbs–Cahn integra-
tion formalism outlined above to determine high precision
results �wf for this system with a significant reduction in
computational effort.

For the hard-sphere fluid/hard-wall system considered
here, we can assume constant temperature without loss of
generality because the density profile is independent of T and
the interfacial free energy has a trivial linear scaling with T;

204101-3 Interfacial free energy of a fluid at a wall J. Chem. Phys. 132, 204101 �2010�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.46.100 On: Tue, 16 Sep 2014 16:53:43



that is, �=��kT /�2, where �� is dependent only on the den-
sity. For constant temperature, Eq. �19� becomes

d� = vNdP . �27�

Using Eq. �13�, the excess volume per unit area, vN, can be
written in terms of the density profile, 
�z�,

vN = �
0

� �1 −

�z�

 f


dz , �28�

where 
 f is the bulk fluid density. In the limit of zero density,
where the density profile approaches a step function centered
at z=� /2, the quantity vN approaches 1/2.

We have performed MD simulations using the algorithm
of Rapaport.40 The simulation box is tetragonal with hard
walls placed at z=0 and 65�. The x-y cross section is square
with a side length of 50�. Periodic boundary conditions are
employed in the x and y directions. The volume of the box is
fixed and the bulk density and pressure are varied by chang-
ing number of particles. The number of particles ranges from
about 8000 at the lowest pressure studied to about 150 000 at
the highest. The bulk densities and pressures are determined
by averaging over the bulk region, which we define as the
region farther than 12� away from either wall �that is, 12�
�z�53��. We have determined that the effect of the walls
in this region is significantly smaller than the statistical error
in the bulk properties. The resulting bulk fluid densities,
pressures, and excess volumes are summarized in Table I.

To find � as a function of P, we integrate Eq. �28� and
use the fact that � will approach zero in the limit of zero
pressure. To reduce the integration error, we subtract from v
the value of the excess volume per unit area according to
SPT,

vSPT =
1 − �

2 + 4�
� , �29�

where �=�
�3 /6 is the packing fraction. This expression
was determined by differentiating the SPT expression38,39 for
� with respect to P,

�SPT = PSPT�/2 −
9�2�1 + ��
2��1 − ��3kT�−2, �30�

where the SPT expression for pressure is

0 5 10
Pσ3

/kT

0

0.1

0.2

0.3

0.4

0.5

v/
σ

Simulation
SPT

FIG. 1. Excess interfacial volume per unit area, v, for the hard-sphere/hard-
wall system as a function of reduced pressure. The black circles are the
results of the current study. A 95% confidence level is used to construct the
error bars. The line shows this quantity as predicted by SPT using the
Percus–Yevick expression for the pressure.

0 5 10

Pσ3/kT

0

0.5

1

1.5

2

γσ
2 /k

T

Pressure Integration
Cleaving (LD)
Virial (MJ)
Thermodynamic Integration (DF)
Thermodynamic integration (HL)
SPT
SPT + CS

FIG. 2. Wall-fluid interfacial free energy per unit area, �wf, for the hard-
sphere system as a function of reduced pressure. The black circles are the
results of the current study. A 95% confidence level is used to construct the
error bars. For comparison, results from previous studies are also shown as
open symbols: squares �Ref. 19, cleaving�, circles �Ref. 28, virial�, dia-
monds �Refs. 20 and 37, thermodynamic integration�, and triangles �Ref. 36,
thermodynamic integration�. The lines show the predictions of SPT using
the Percus–Yevick �solid line� or Carnahan–Starling �dashed line� expres-
sions for the pressure.

TABLE I. Summary of results for excess volume v and wall-fluid interfacial
free energy �wf for the hard-sphere/hard-wall system as functions of density
and pressure.


�=
�3 P�= P�3 /kT v�=v /� vSPT
� =vSPT /� �wf

� =�wf�
2 /kT

0.0 0.0 0.5 0.5 0.0
0.050 715�2� 0.056 479�1� 0.461�2� 0.4620 0.027 10�6�
0.101 326�3� 0.125 984�2� 0.426�2� 0.4281 0.057 91�11�
0.193 195�6� 0.295 480�3� 0.370�2� 0.3738 0.1250�3�
0.302 903�11� 0.600 410�6� 0.312�2� 0.3196 0.2281�5�
0.385 260�13� 0.935 945�11� 0.276�2� 0.2848 0.3263�7�
0.482 523�17� 1.506 138�15� 0.238�2� 0.2490 0.4720�11�
0.545 621�17� 2.016 76�2� 0.216�2� 0.2283 0.5877�13�
0.636 66�2� 3.033 21�4� 0.187�2� 0.2014 0.792�2�
0.699 68�2� 4.002 90�4� 0.1718�18� 0.1846 0.965�2�
0.749 623�18� 4.983 07�7� 0.1576�18� 0.1722 1.126�3�
0.791 59�3� 5.989 80�10� 0.148�2� 0.1623 1.280�3�
0.828 50�3� 7.047 81�14� 0.1378�17� 0.1540 1.431�3�
0.857 43�2� 8.010 29�16� 0.1303�16� 0.1478 1.560�4�
0.884 34�2� 9.030 41�13� 0.1231�17� 0.1421 1.689�5�
0.907 21�2� 10.006 88�15� 0.1153�16� 0.1374 1.806�4�
0.927 12�2� 10.9470�2� 0.1099�13� 0.1335 1.912�4�
0.939 00�2� 11.5552�3� 0.1044�13� 0.1311 1.977�4�

204101-4 B. B. Laird and R. L. Davidchack J. Chem. Phys. 132, 204101 �2010�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.46.100 On: Tue, 16 Sep 2014 16:53:43



PSPT =
6��1 + � + �2�

��1 − ��3 kT�−3. �31�

The calculated values of vSPT at the pressures studied are
also listed in Table I. A comparison of the excess volumes
from simulation and SPT is shown in Fig. 1.

The values of �wf as a function of pressure are then
determined by evaluation of the integral

��P� = �SPT + �
0

P

�v − vSPT�dP�. �32�

The integral is computed numerically using the trapezoid
rule, which has an error for one step of �−h3f���� /12�, where
h is the step length, f is the integrand, and � is some point
within the step interval. An upper bound of f� within each
step can be estimated from a polynomial fit of the integrand,
from which we conclude that the integration error in the
calculation of �wf is significantly smaller than the estimated
statistical error. The calculated values of �wf are summarized
in Table I. The computational effort to calculate � at the 17
different pressures from P=0 up to the coexistence pressure
reported in Table I was comparable to that for the calculation
of � at a single pressure using the cleaving method.19

Figure 2 shows the results of the current simulations
with SPT and previous simulations. For better resolution of
the high pressure results, Fig. 3 shows the same data as in
Fig. 2 plotted over the pressure range of 8–12 kT /�3. These
figures show that the current results are in excellent agree-
ment with the most precise previous simulation results,
namely, the cleaving method calculations of Laird and
Davidchack19 and the thermodynamic integration calcula-
tions of Fortini and Dijkstra.20,37 The results also agree
within the error bars with the thermodynamic simulation re-
sults of Heni and Löwen,36 but are at high pressures signifi-
cantly larger than the results of the simulations of De Miguel

and Jackson,28 who used a mechanical approach. In Figs. 2
and 3, two curves derived from SPT are shown. The upper
�solid� curve uses Eq. �30� with the pressure evaluated using
the standard SPT expression given in Eq. �31� and the lower
�dashed� curve is the same, except that the pressure is evalu-
ated using the Carnahan–Starling �CS� hard-sphere equation
of state,

PSPT
CS =

6��1 + � + �2 − �3�
��1 − ��3 kT�−3. �33�
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