9,269 research outputs found
Flexibly Instructable Agents
This paper presents an approach to learning from situated, interactive
tutorial instruction within an ongoing agent. Tutorial instruction is a
flexible (and thus powerful) paradigm for teaching tasks because it allows an
instructor to communicate whatever types of knowledge an agent might need in
whatever situations might arise. To support this flexibility, however, the
agent must be able to learn multiple kinds of knowledge from a broad range of
instructional interactions. Our approach, called situated explanation, achieves
such learning through a combination of analytic and inductive techniques. It
combines a form of explanation-based learning that is situated for each
instruction with a full suite of contextually guided responses to incomplete
explanations. The approach is implemented in an agent called Instructo-Soar
that learns hierarchies of new tasks and other domain knowledge from
interactive natural language instructions. Instructo-Soar meets three key
requirements of flexible instructability that distinguish it from previous
systems: (1) it can take known or unknown commands at any instruction point;
(2) it can handle instructions that apply to either its current situation or to
a hypothetical situation specified in language (as in, for instance,
conditional instructions); and (3) it can learn, from instructions, each class
of knowledge it uses to perform tasks.Comment: See http://www.jair.org/ for any accompanying file
Generating Generalized Distributions from Dynamical Simulation
We present a general molecular-dynamics simulation scheme, based on the Nose'
thermostat, for sampling according to arbitrary phase space distributions. We
formulate numerical methods based on both Nose'-Hoover and Nose'-Poincare'
thermostats for two specific classes of distributions; namely, those that are
functions of the system Hamiltonian and those for which position and momentum
are statistically independent. As an example, we propose a generalized variable
temperature distribution that designed to accelerate sampling in molecular
systems.Comment: 10 pages, 3 figure
A molecular-dynamics algorithm for mixed hard-core/continuous potentials
We present a new molecular-dynamics algorithm for integrating the equations
of motion for a system of particles interacting with mixed continuous/impulsive
forces. This method, which we call Impulsive Verlet, is constructed using
operator splitting techniques similar to those that have been used successfully
to generate a variety molecular-dynamics integrators. In numerical experiments,
the Impulsive Verlet method is shown to be superior to previous methods with
respect to stability and energy conservation in long simulations.Comment: 18 pages, 6 postscript figures, uses rotate.st
Symplectic algorithm for constant-pressure molecular dynamics using a Nose-Poincare thermostat
We present a new algorithm for isothermal-isobaric molecular-dynamics
simulation. The method uses an extended Hamiltonian with an Andersen piston
combined with the Nos'e-Poincar'e thermostat, recently developed by Bond,
Leimkuhler and Laird [J. Comp. Phys., 151, (1999)]. This
Nos'e-Poincar'e-Andersen (NPA) formulation has advantages over the
Nos'e-Hoover-Andersen approach in that the NPA is Hamiltonian and can take
advantage of symplectic integration schemes, which lead to enhanced stability
for long-time simulations. The equations of motion are integrated using a
Generalized Leapfrog Algorithm and the method is easy to implement, symplectic,
explicit and time reversible. To demonstrate the stability of the method we
show results for test simulations using a model for aluminum.Comment: 7 page
Induced radioactivity in LDEF components
A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes
Adjusting the melting point of a model system via Gibbs-Duhem integration: application to a model of Aluminum
Model interaction potentials for real materials are generally optimized with
respect to only those experimental properties that are easily evaluated as
mechanical averages (e.g., elastic constants (at T=0 K), static lattice
energies and liquid structure). For such potentials, agreement with experiment
for the non-mechanical properties, such as the melting point, is not guaranteed
and such values can deviate significantly from experiment. We present a method
for re-parameterizing any model interaction potential of a real material to
adjust its melting temperature to a value that is closer to its experimental
melting temperature. This is done without significantly affecting the
mechanical properties for which the potential was modeled. This method is an
application of Gibbs-Duhem integration [D. Kofke, Mol. Phys.78, 1331 (1993)].
As a test we apply the method to an embedded atom model of aluminum [J. Mei and
J.W. Davenport, Phys. Rev. B 46, 21 (1992)] for which the melting temperature
for the thermodynamic limit is 826.4 +/- 1.3K - somewhat below the experimental
value of 933K. After re-parameterization, the melting temperature of the
modified potential is found to be 931.5K +/- 1.5K.Comment: 9 pages, 5 figures, 4 table
Negations in syllogistic reasoning: Evidence for a heuristic–analytic conflict
An experiment utilizing response time measures was conducted to test dominant processing strategies in syllogistic reasoning with the expanded quantifier set proposed by Roberts (2005). Through adding negations to existing quantifiers it is possible to change problem surface features without altering logical validity. Biases based on surface features such as atmosphere, matching, and the probability heuristics model (PHM; Chater & Oaksford, 1999; Wetherick & Gilhooly, 1995) would not be expected to show variance in response latencies, but participant responses should be highly sensitive to changes in the surface features of the quantifiers. In contrast, according to analytic accounts such as mental models theory and mental logic (e.g., Johnson-Laird & Byrne, 1991; Rips, 1994) participants should exhibit increased response times for negated premises, but not be overly impacted upon by the surface features of the conclusion. Data indicated that the dominant response strategy was based on a matching heuristic, but also provided evidence of a resource-demanding analytic procedure for dealing with double negatives. The authors propose that dual-process theories offer a stronger account of these data whereby participants employ competing heuristic and analytic strategies and fall back on a heuristic response when analytic processing fails
Induced activation study of LDEF
Analysis of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is continuing with extraction of specific activities for various spacecraft materials. Data and results of activation measurements from eight facilities are being collected for interpretation at Eastern Kentucky University and NASA/Marshall Space Flight Center. The major activation mechanism in LDEF components is the proton flux in the South Atlantic Anomaly (SAA). This flux is highly anisotropic, and could be sampled by taking advantage of the gravity-gradient stabilization of the LDEF. The directionally-dependent activation due to these protons was clearly observed in the data from aluminum experiment tray clamps (reaction product Na-22), steel trunnions (reaction product Mn-54 and others) and is also indicated by the presence of a variety of nuclides in other materials. A secondary production mechanism, thermal neutron capture, was observed in cobalt, indium, and tantalum, which are known to have large capture cross sections. Experiments containing samples of these metals and significant amounts of thermalizing low atomic number (Z) material showed clear evidence of enhanced activation of Co-60, In-114m, and Ta-182. Other mechanisms which activate spacecraft material that are not as easily separable from SAA proton activation, such as galactic proton bombardment and secondary production by fast neutrons, are being investigated by comparison to radiation environmental calculations. Deviations from one-dimensional radiation models indicate that these mechanisms are more important at greater shielding depths. The current status of the induced radioactivity measurements as of mid-year 1992 are reviewed. Specific activities for a number of materials which show SAA effects and thermal neutron capture are presented. The results for consistency by combining data from the participating institutions is also examined
- …