9,269 research outputs found

    Flexibly Instructable Agents

    Full text link
    This paper presents an approach to learning from situated, interactive tutorial instruction within an ongoing agent. Tutorial instruction is a flexible (and thus powerful) paradigm for teaching tasks because it allows an instructor to communicate whatever types of knowledge an agent might need in whatever situations might arise. To support this flexibility, however, the agent must be able to learn multiple kinds of knowledge from a broad range of instructional interactions. Our approach, called situated explanation, achieves such learning through a combination of analytic and inductive techniques. It combines a form of explanation-based learning that is situated for each instruction with a full suite of contextually guided responses to incomplete explanations. The approach is implemented in an agent called Instructo-Soar that learns hierarchies of new tasks and other domain knowledge from interactive natural language instructions. Instructo-Soar meets three key requirements of flexible instructability that distinguish it from previous systems: (1) it can take known or unknown commands at any instruction point; (2) it can handle instructions that apply to either its current situation or to a hypothetical situation specified in language (as in, for instance, conditional instructions); and (3) it can learn, from instructions, each class of knowledge it uses to perform tasks.Comment: See http://www.jair.org/ for any accompanying file

    Generating Generalized Distributions from Dynamical Simulation

    Get PDF
    We present a general molecular-dynamics simulation scheme, based on the Nose' thermostat, for sampling according to arbitrary phase space distributions. We formulate numerical methods based on both Nose'-Hoover and Nose'-Poincare' thermostats for two specific classes of distributions; namely, those that are functions of the system Hamiltonian and those for which position and momentum are statistically independent. As an example, we propose a generalized variable temperature distribution that designed to accelerate sampling in molecular systems.Comment: 10 pages, 3 figure

    A molecular-dynamics algorithm for mixed hard-core/continuous potentials

    Get PDF
    We present a new molecular-dynamics algorithm for integrating the equations of motion for a system of particles interacting with mixed continuous/impulsive forces. This method, which we call Impulsive Verlet, is constructed using operator splitting techniques similar to those that have been used successfully to generate a variety molecular-dynamics integrators. In numerical experiments, the Impulsive Verlet method is shown to be superior to previous methods with respect to stability and energy conservation in long simulations.Comment: 18 pages, 6 postscript figures, uses rotate.st

    Symplectic algorithm for constant-pressure molecular dynamics using a Nose-Poincare thermostat

    Get PDF
    We present a new algorithm for isothermal-isobaric molecular-dynamics simulation. The method uses an extended Hamiltonian with an Andersen piston combined with the Nos'e-Poincar'e thermostat, recently developed by Bond, Leimkuhler and Laird [J. Comp. Phys., 151, (1999)]. This Nos'e-Poincar'e-Andersen (NPA) formulation has advantages over the Nos'e-Hoover-Andersen approach in that the NPA is Hamiltonian and can take advantage of symplectic integration schemes, which lead to enhanced stability for long-time simulations. The equations of motion are integrated using a Generalized Leapfrog Algorithm and the method is easy to implement, symplectic, explicit and time reversible. To demonstrate the stability of the method we show results for test simulations using a model for aluminum.Comment: 7 page

    Induced radioactivity in LDEF components

    Get PDF
    A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes

    Adjusting the melting point of a model system via Gibbs-Duhem integration: application to a model of Aluminum

    Get PDF
    Model interaction potentials for real materials are generally optimized with respect to only those experimental properties that are easily evaluated as mechanical averages (e.g., elastic constants (at T=0 K), static lattice energies and liquid structure). For such potentials, agreement with experiment for the non-mechanical properties, such as the melting point, is not guaranteed and such values can deviate significantly from experiment. We present a method for re-parameterizing any model interaction potential of a real material to adjust its melting temperature to a value that is closer to its experimental melting temperature. This is done without significantly affecting the mechanical properties for which the potential was modeled. This method is an application of Gibbs-Duhem integration [D. Kofke, Mol. Phys.78, 1331 (1993)]. As a test we apply the method to an embedded atom model of aluminum [J. Mei and J.W. Davenport, Phys. Rev. B 46, 21 (1992)] for which the melting temperature for the thermodynamic limit is 826.4 +/- 1.3K - somewhat below the experimental value of 933K. After re-parameterization, the melting temperature of the modified potential is found to be 931.5K +/- 1.5K.Comment: 9 pages, 5 figures, 4 table

    Negations in syllogistic reasoning: Evidence for a heuristic–analytic conflict

    Get PDF
    An experiment utilizing response time measures was conducted to test dominant processing strategies in syllogistic reasoning with the expanded quantifier set proposed by Roberts (2005). Through adding negations to existing quantifiers it is possible to change problem surface features without altering logical validity. Biases based on surface features such as atmosphere, matching, and the probability heuristics model (PHM; Chater & Oaksford, 1999; Wetherick & Gilhooly, 1995) would not be expected to show variance in response latencies, but participant responses should be highly sensitive to changes in the surface features of the quantifiers. In contrast, according to analytic accounts such as mental models theory and mental logic (e.g., Johnson-Laird & Byrne, 1991; Rips, 1994) participants should exhibit increased response times for negated premises, but not be overly impacted upon by the surface features of the conclusion. Data indicated that the dominant response strategy was based on a matching heuristic, but also provided evidence of a resource-demanding analytic procedure for dealing with double negatives. The authors propose that dual-process theories offer a stronger account of these data whereby participants employ competing heuristic and analytic strategies and fall back on a heuristic response when analytic processing fails

    Induced activation study of LDEF

    Get PDF
    Analysis of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is continuing with extraction of specific activities for various spacecraft materials. Data and results of activation measurements from eight facilities are being collected for interpretation at Eastern Kentucky University and NASA/Marshall Space Flight Center. The major activation mechanism in LDEF components is the proton flux in the South Atlantic Anomaly (SAA). This flux is highly anisotropic, and could be sampled by taking advantage of the gravity-gradient stabilization of the LDEF. The directionally-dependent activation due to these protons was clearly observed in the data from aluminum experiment tray clamps (reaction product Na-22), steel trunnions (reaction product Mn-54 and others) and is also indicated by the presence of a variety of nuclides in other materials. A secondary production mechanism, thermal neutron capture, was observed in cobalt, indium, and tantalum, which are known to have large capture cross sections. Experiments containing samples of these metals and significant amounts of thermalizing low atomic number (Z) material showed clear evidence of enhanced activation of Co-60, In-114m, and Ta-182. Other mechanisms which activate spacecraft material that are not as easily separable from SAA proton activation, such as galactic proton bombardment and secondary production by fast neutrons, are being investigated by comparison to radiation environmental calculations. Deviations from one-dimensional radiation models indicate that these mechanisms are more important at greater shielding depths. The current status of the induced radioactivity measurements as of mid-year 1992 are reviewed. Specific activities for a number of materials which show SAA effects and thermal neutron capture are presented. The results for consistency by combining data from the participating institutions is also examined
    • …
    corecore