We present a new algorithm for isothermal-isobaric molecular-dynamics
simulation. The method uses an extended Hamiltonian with an Andersen piston
combined with the Nos'e-Poincar'e thermostat, recently developed by Bond,
Leimkuhler and Laird [J. Comp. Phys., 151, (1999)]. This
Nos'e-Poincar'e-Andersen (NPA) formulation has advantages over the
Nos'e-Hoover-Andersen approach in that the NPA is Hamiltonian and can take
advantage of symplectic integration schemes, which lead to enhanced stability
for long-time simulations. The equations of motion are integrated using a
Generalized Leapfrog Algorithm and the method is easy to implement, symplectic,
explicit and time reversible. To demonstrate the stability of the method we
show results for test simulations using a model for aluminum.Comment: 7 page