3,043 research outputs found

    Observation of quantum interference as a function of Berry's phase in a complex Hadamard optical network

    Full text link
    Emerging models of quantum computation driven by multi-photon quantum interference, while not universal, may offer an exponential advantage over classical computers for certain problems. Implementing these circuits via geometric phase gates could mitigate requirements for error correction to achieve fault tolerance while retaining their relative physical simplicity. We report an experiment in which a geometric phase is embedded in an optical network with no closed-loops, enabling quantum interference between two photons as a function of the phase.Comment: Comments welcom

    Multifrequency VLA observations of the FR I radio galaxy 3C 31: morphology, spectrum and magnetic field

    Full text link
    We present high-quality VLA images of the FR I radio galaxy 3C 31 in the frequency range 1365 to 8440 MHz with angular resolutions from 0.25 to 40 arcsec. Our new images reveal complex, well resolved filamentary substructure in the radio jets and tails. We also use these images to explore the spectral structure of 3C 31 on large and small scales. We infer the apparent magnetic field structure by correcting for Faraday rotation. Some of the intensity substructure in the jets is clearly related to structure in their apparent magnetic field: there are arcs of emission where the degree of linear polarization increases, with the apparent magnetic field parallel to the ridges of the arcs. The spectral indices are significantly steeper (0.62) within 7 arcsec of the nucleus than between 7 and 50 arcsec (0.52 - 0.57). The spectra of the jet edges are also slightly flatter than the average for their surroundings. At larger distances, the jets are clearly delimited from surrounding larger-scale emission both by their flatter radio spectra and by sharp brightness gradients. The spectral index of 0.62 in the first 7 arcsec of 3C 31's jets is very close to that found in other FR I galaxies where their jets first brighten in the radio and where X-ray synchrotron emission is most prominent. Farther from the nucleus, where the spectra flatten, X-ray emission is fainter relative to the radio. The brightest X-ray emission from FR I jets is therefore not associated with the flattest radio spectra, but with a particle-acceleration process whose characteristic energy index is 2.24. The spectral flattening with distance from the nucleus occurs where our relativistic jet models require deceleration, and the flatter-spectra at the jet edges may be associated with transverse velocity shear. (Slightly abridged)Comment: 17 pages, 13 figures, accepted for publication in MNRA

    Boson Sampling from Gaussian States

    Full text link
    We pose a generalized Boson Sampling problem. Strong evidence exists that such a problem becomes intractable on a classical computer as a function of the number of Bosons. We describe a quantum optical processor that can solve this problem efficiently based on Gaussian input states, a linear optical network and non-adaptive photon counting measurements. All the elements required to build such a processor currently exist. The demonstration of such a device would provide the first empirical evidence that quantum computers can indeed outperform classical computers and could lead to applications

    Relativistic Landau damping of longitudinal waves in isotropic pair plasmas

    Get PDF
    Landau damping is described in relativistic electron-positron plasmas. Relativistic electron-positron plasma theory contains important new effects when compared with classical plasmas. For example, there are undamped superluminal wave modes arising from both a continuous and discrete mode structure, the former even in the classical limit. We present here a comprehensive analytical treatment of the general case resulting in a compact and useful form for the dispersion relation. The classical pair-plasma case is addressed, for completeness, in an appendix

    The XMM-Newton Detection of Diffuse Inverse Compton X-rays from Lobes of the FR-II Radio Galaxy 3C98

    Full text link
    The XMM-Newton observation of the nearby FR-II radio galaxy 3C 98 is reported. In two exposures on the target, faint diffuse X-ray emission associated with the radio lobes was significantly detected, together with a bright X-ray active nucleus, of which the 2 -- 10 keV intrinsic luminosity is (4 -- 8) \times 10^{42} erg s-1. The EPIC spectra of the northern and southern lobes are reproduced by a single power law model modified by the Galactic absorption, with a photon index of 2.2-0.5+0.6 and 1.7-0.6+0.7 respectively. These indices are consistent with that of the radio synchrotron spectrum, 1.73 +- 0.01 The luminosity of the northern and southern lobes are measured to be 8.3-2.6+3.3 \times 10^{40} erg s-1 and 9.2-4.3+5.7 \times 10^{40} erg s-1, respectively, in the 0.7 -- 7 keV range. The diffuse X-ray emission is interpreted as an inverse-Compton emission, produced when the synchrotron-emitting energetic electrons in the lobes scatter off the cosmic microwave background photons. The magnetic field in the lobes is calculated to be about 1.7 \mu G, which is about 2.5 times lower than the value estimated under the minimum energy condition. The energy density of the electrons is inferred to exceed that in the magnetic fields by a factor of 40 -- 50.Comment: 23 pages, 7 figures. Accepted for publication in the Astrophysical Journa

    The Apparent Anomalous, Weak, Long-Range Acceleration of Pioneer 10 and 11

    Get PDF
    Recently we reported that radio Doppler data generated by NASA's Deep Space Network (DSN) from the Pioneer 10 and 11 spacecraft indicate an apparent anomalous, constant, spacecraft acceleration with a magnitude ∼8.5×10−8\sim 8.5\times 10^{-8} cm s−2^{-2}, directed towards the Sun (gr-qc/9808081). Analysis of similar Doppler and ranging data from the Galileo and Ulysses spacecraft yielded ambiguous results for the anomalous acceleration, but it was useful in that it ruled out the possibility of a systematic error in the DSN Doppler system that could easily have been mistaken as a spacecraft acceleration. Here we present some new results, including a critique suggestions that the anomalous acceleration could be caused by collimated thermal emission. Based partially on a further data for the Pioneer 10 orbit determination, the data now spans January 1987 to July 1998, our best estimate of the average Pioneer 10 acceleration directed towards the Sun is ∼7.5×10−8\sim 7.5 \times 10^{-8} cm s−2^{-2}.Comment: Latex, 7 pages and 2 figures. Invited talk at the XXXIV-th Rencontres de Moriond Meeting on Gravitational Waves and Experimental Gravity. Les Arcs, Savoi, France (January 23-30,1999). Corrected typo

    Synthetic routes to treprostinil N-acyl methylsulfonamide

    Get PDF
    The synthesis of the prodrug candidate, treprostinil N-acyl methylsulfonamide 5 was accomplished from treprostinil 2 utilising protecting group strategies. A more direct synthesis for the prodrug was also achieved using a treprostinil triol precursor 12 and bromoacetyl acylmethylsulfonamide 14. The overall yield of treprostinil N-acyl sulfonamide 5 directly from the triol precursor 12 is similar to the protecting group strategies because deprotonation of the acidic proton in the bromoacetyl acylmethylsulfonamide 14 reduces electrophilicity. However, the more direct route using the treprostinil triol precursor holds greater promise as a strategy to prepare a wide range of treprostinil prodrug candidates. Treprostinil N-acyl methylsulfonamide prodrug 5 exhibited a 30-fold decrease in the potency at the human prostacyclin (IP) receptor compared to treprostinil 2 in an in vitro cyclic AMP assay

    A Chandra detection of diffuse hard X-ray emission associated with the lobes of the radio galaxy 3C 452

    Full text link
    An 80 ksec Chandra ACIS observation of the radio galaxy 3C 452 is reported. A diffuse X-ray emission associated with the lobes has been detected with high statistical significance, together with the X-ray nucleus of the host galaxy. The 0.5--5 keV ACIS spectrum of the diffuse emission is described by a two-component model, consisting of a soft thermal plasma emission from the host galaxy halo and a hard non-thermal power-law component. The hard component is ascribed to the inverse Comptonization of cosmic microwave background photons by the synchrotron emitting electrons in the lobes, because its spectral energy index, 0.68+-0.28, is consistent with the radio synchrotron index, 0.78. These results reveal a significant electron dominance in the lobes. The electrons are inferred to have a relatively uniform distribution, while the magnetic field is compressed toward the lobe periphery.Comment: 4 figures, 2 tables, Accepted by ApJL (to appear in the December 1 issue

    Anderson et al. Reply (to the Comment by Murphy on Pioneer 10/11)

    Full text link
    We conclude that Murphy's proposal (radiation of the power of the main-bus electrical systems from the rear of the craft) can not explain the anomalous Pioneer acceleration.Comment: LaTex, 3 pages, Phys. Rev. Lett. (to be published
    • …
    corecore