12 research outputs found

    GC-MS profile of extracts of an endophytic fungus Alternaria and evaluation of its anticancer and antibacterial potentialities

    No full text
    Using microbial endophytes to produce bioactive compounds is a reliable scientific method. This investigation aimed to use the Acacia plant for isolating an endophytic fungal strain that has a bio-ability to produce a bio-crude extract. This study also encompassed the assessment of the extract’s biological efficacy as an antibacterial and anticancer agent. Samples of the Acacia plant were collected from “Shuaib Huraymila,” in Riyadh, Saudi Arabia. The isolation and identification of fungal endophytes was done, and then, the production of crude extract was performed using the isolated endophytes. The profile gas chromatography-mass spectroscopy of the extract was determined, followed by the assessment of its biological activity against drug-resistant infections and cancer cells through in vitro examination. The findings showed that the fungal endophyte was Alternaria (Alternaria sorghi), according to internal transcribed spacer sequencing and basic local alignment search tool analysis. The minimum inhibitory concentrations of the extract were 9.1 and 4.5 mg/mL for methicillin-resistant Staphylococcus aureus and drug-resistant Candida auris, respectively, and the IC50% values were 46.6 and 23.7 mg/mL for MCF-7 and A549, respectively. The findings showed that this strain had no antagonistic action against Culex pipiens. This study concluded that the fungal endophyte isolated from the Acacia plant has the bio-ability to produce antimicrobial and anticancer agents

    Insecticidal Activity of Tannins from Selected Brown Macroalgae against the Cotton Leafhopper <i>Amrasca devastans</i>

    No full text
    Seaweeds, also known as marine macroalgae, are renewable biological resources that are found worldwide and possess a wide variety of secondary metabolites, including tannins. Drifted brown seaweed (DBSW) is particularly rich in tannins and is regarded as biological trash. The cotton leaf hopper Amrasca devastans (Distant) has caused both quantitative and qualitative losses in cotton production. Drifted brown seaweeds (DBSWs) were used in this study to extract, qualitatively profile, and quantify the levels of total tannins, condensed tannins, hydrolyzable tannins, and phlorotannins in the seaweeds; test their insecticidal activity; and determine the mechanism of action. The largest amount of tannin extract was found in Sargassum wightii Greville (20.62%) using the Soxhlet method (SM). Significantly higher amounts of hydrolyzable tannins (p = 0.005), soluble phlorotannins (p = 0.005), total tannins in the SM (p = 0.003), and total tannins in the cold percolation method (p = 0.005) were recorded in S. wightii. However, high levels of condensed tannins (CTAs) were observed in Turbinaria ornata (Turner) J. Agardh (p = 0.004). A. devastans nymphs and adults were examined for oral toxicity (OT) and contact toxicity (CT) against DBSW tannin crude extract and column chromatographic fractions 1 (Rf = 0.86) and 2 (Rf = 0.88). Stoechospermum polypodioides (J.V. Lamouroux) J. Agardh crude tannin was highly effective against A. devastans using the OT method (LC50, 0.044%) when compared with the standard gallic acid (LC50, 0.044%) and tannic acid (LC50, 0.122%). Similarly, S. wightii fraction 2 (LC50, 0.007%) showed a greater insecticidal effect against A. devastans adults in OT than gallic acid (LC50, 0.034%) and tannic acid (LC50, 0.022%). The mechanism of action results show that A. devastans adults treated with crude tannin of T. ornata had significantly decreased amylase, protease (p = 0.005), and invertase (p = 0.003) levels when compared with the detoxification enzymes. The levels of glycosidase, lactate dehydrogenase, esterase, lipase, invertase, and acid phosphate activities (p = 0.005) of S. wightii were reduced when compared with those of the Vijayneem and chemical pesticide Monocrotophos. In adult insects treated with LC50 concentrations of S. wightii tannin fraction 1, the total body protein (9.00 ”g/”L) was significantly reduced (OT, LC50—0.019%). The SDS-PAGE analysis results also show that S. wightii tannin fraction 1 (OT and CT), fraction 2 (OT), and S. polypodioides fraction 2 (CT) had a significant effect on the total body portion level, appearance, and disappearance of some proteins and polypeptides. This study shows that the selected brown macroalgae can be utilized for the safer management of cotton leaf hoppers

    Reducing Herbicide Dependency: Impact of <i>Murraya koenigii</i> Leaf Extract on Weed Control and Growth of Wheat (<i>Triticum aestivum</i>) and Chickpea (<i>Cicer arietinum</i>)

    No full text
    The objective of this study was to determine the effects of Murraya koenigii (curry leaf) aqueous extract on the seed germination and growth of two crops and their associated weeds (Anagallis arvensis, Poa annua, Lepidium didymum, and Vicia sativa). Wheat (Triticum aestivum) and Chickpea (Cicer arietinum) seeds were soaked in solutions containing 2, 4, 6, 8, and 10% concentrations of aqueous extracts of M. koenigii leaves, while distilled water was used as a control. Higher concentrations of the extract significantly increased the percentage of germination inhibition and decreased the radicle length and plumule length of both crops compared to the control. It was interesting to find that the pot-based experiment had no influence on the shoot length, plant dry mass, chlorophyll, carotenoid, proline, or protein content, stomatal conductance, or photosynthetic and transpiration rate in either crop. Similarly, in comparison to the control, the activity of antioxidant enzymes (peroxidase (PER), superoxide dismutase (SOD), and catalase (CAT)) had no significant influence. Soil physiochemical parameters and weed shoot growth were also investigated. In a Petri plate experiment, 6, 8, and 10% concentrations inhibited germination of both crops. In comparison, in the pot experiment, the growth of both crops was significant at lower concentrations, and 1% aqueous extract of M. koenigii was reported to be lethal to weeds without affecting the soil physiochemical properties. Based on the results of this study, it can be inferred that the reduced germination rate of the tested species after treatment with the extract could be attributed to damage caused by the extracts to the membrane system of the seed. This study concluded that an aqueous leaf extract of M. koenigii can inhibit the growth of weeds without affecting the germination, growth, photosynthetic, and biochemical properties of C. arietinum and T. aestivum or the physiochemical properties of soil; thus, it may be a potential candidate for the development of new bioherbicides

    Biochemical and insecticidal efficacy of clove and basil essential oils and two photosensitizers and their combinations on Aphis gossypii glover (Hemiptera: Aphididae)

    No full text
    The present study investigates the insecticidal and biochemical effects of two essential oils (EOs) and two photosensitizers against cotton aphids in a laboratory setting. The EOs evaluated were clove (Syzygium aromaticum L.) and basil (Ocimum basilicum), while the photosensitizers were rose bengal and rhodamine B. The individual median lethal concentrations (LC50) revealed that clove was ~4.44 times more potent than basil, and rhodamine B was ~1.34 times more potent than rose bengal. The mortality rates increased using higher concentrations of the photosensitizers and prolonging exposure time to sunlight. The most effective combination against adult aphids was found to be a mixture of sub-lethal concentrations of clove and rhodamine B, resulting in a mortality rate of 92.31%. Conversely, the combination of basil and rose bengal exhibited the lowest efficacy with a mortality rate of 33.33%. Biochemical analyses indicate that Rhodamine B, basil, and the basil-rhodamine B mixture (mixture C) significantly reduced trehalase activity. However, the protease activity significantly increased in aphids treated with rose bengal, clove, and the clove-rose bengal mixtures (mixtures A and B). The lipase activity is notably decreased upon treatment with rhodamine B and clove. Glutathione S-transferase (GST) activity decreased in aphids treated with rose bengal and the basil-rhodamine B mixtures (mixtures C and D), suggesting that GST did not play a role in detoxifying these compounds, thereby explaining the susceptibility of A. gossypii. Overall, the combination of essential oils and photosensitizers has demonstrated a synergistic effect in controlling Aphis gossypii, offering great potential as an effective strategy for aphid management

    A Newly Emerging Serotype A Strain in Foot-and-Mouth Disease Virus with Higher Severity and Mortality in Buffalo than in Cattle Calves in North Egypt

    No full text
    A severe foot-and-mouth disease (FMD) epidemic struck several Egyptian provinces recently, causing significant losses among animals even in vaccinated farms. This study indicated the existence of the newly emerging foot-and-mouth disease virus (FMDV) and first investigated its effect on the Egyptian water buffalo (Bubalus bubalis) and cattle calves in the Beheira province, north Egypt. Twenty tongue epithelial samples from diseased calves in five infected farms were randomly collected, prepared, and propagated using baby hamster kidney-21 (BHK-21) cells. Whole genomic RNA was extracted from the cells of the third passage. A FMDV genome was detected and serotyped using one-step reverse transcription polymerase chain reactions (RT-PCRs). Nucleotide sequencing of the purified serotype-specific PCR bands was performed, and a maximum likelihood phylogenetic tree based on 600 base pairs of VP1 was constructed. The results identified FMDV, serotype A in all infected samples, whereas the serotypes O and SAT2 were negative. The obtained 20 sequences were identical to each other and similar to the newly reported strain in Egypt that belongs to the Europe–South America (Euro–SA) topotype. The epidemiological and clinical parameters associated with such a strain were fully recorded by veterinarians and analyzed in a single infected farm including 70 cattle and buffalo calves. It caused higher peracute mortalities in buffalo (25.7%; 95% CI: 13–43) than in cattle (8.6%; 95% CI: 2–24) calves. Severe clinical signs such as dullness, hypothermia, bradycardia, and cardiac arrhythmia were common to both except in fatal cases, whereas hyperthermia and respiratory signs were prevalent in cattle calves. In conclusion, we first characterized the newly emerging FMDV in the calves of Beheira as more fatal and severe in buffalo than in cattle calves

    Multigene Sequence-Based and Phenotypic Characterization Reveals the Occurrence of a Novel Entomopathogenic Nematode Species, Steinernema anantnagense n. sp.

    No full text
    Three entomopathogenic nematode populations were isolated from agricultural fields in the Anantnag district of Jammu and Kashmir (India). Sequences of multiple gene regions and phenotypic features show that they are conspecific and represent a novel species. Molecular and morphological features provided evidence for placing the new species into the “Kushidai” clade. Within this clade, analysis of sequence data of the internal transcribed spacer (ITS) gene, the D2D3 region of the 28S rRNA gene, the mitochondrial cytochrome oxidase I (mtCOI) gene, and the mitochondrial 12S (mt12S) gene depicted the novel species as a distinctive entity closely related to Steinernema akhursti, S. kushidai, and S. populi. Phylogenetic analyses also show that the new species is a sister species to S. akhursti, and these two species are closely related to S. kushidai and S. populi. Additionally, the new species does not mate or produce fertile progeny with any of the closely related species, reinforcing its uniqueness from a biological species concept standpoint. The new species is further characterized by the third-stage infective juveniles with almost straight bodies (0.7–0.8 mm length), poorly developed stoma and pharynx, and conoid-elongate tail (49–66 ”m) with hyaline posterior part. Adult females are characterized by short and conoid tails bearing a short mucron in the first generation and long conoid tails with thin mucron in the second generation. Adult males have ventrally curved spicules in both generations. Moreover, the first-generation male has rounded manubrium, fusiform gubernaculum, conoid and slightly ventrally curved tails with minute mucron, and the second generation has rhomboid manubrium anteriorly ventrad bent, and tails with long and robust mucron. The morphological, morphometrical, molecular, and phylogenetic analyses support the new species status of this nematode, which is hereby described as Steinernema anantnagense n. sp. The bacterial symbiont associated with S. anantnagense n. sp. represents a novel species, closely related to Xenorhabdus japonica. These findings shed light on the diversity of entomopathogenic nematodes and their symbiotic bacteria, providing valuable information for future studies in this field

    First record of West Nile Virus detection inside wild mosquitoes in Khartoum capital of Sudan using PCR

    No full text
    This study aimed to explore the presence of West Nile Virus (WNV) inside four species of mosquitoes: Culex univittatus (Theobald), Culex quinquefasciatus (Say) Aedes vittatus (Bigot) and Aedes vexans (Meigen). Adult wild mosquitoes were collected from different sites: Soba West, Hellat Kuku, Shambat, and Khartoum North Central Live Stock Market (KCLM). Surveys were carried out at Khartoum State during two phases: pre to the rainy season and post to the rainy season. Mosquito specimens were identified using classical keys then preserved at −80 °C freezer for two weeks till the virus examination using polymerase chain reaction (PCR) were carried out. WNV has been detected inside the three species of mosquitoes: A. vexans, C. univittatus, and C. quinquefasciatus. The species were collected from Hellat Kuku, (Shambat and Hellat Kuku), and (Shambat and KCLM) respectively. Two species of mosquitoes were positive for the virus: C. quinquefasciatus and C. univittatus. Positive results for the virus during the first phase of the study; males of C. quinquefasciatus and C. univittatus collected during the second phase of the study were also tested for the existence of the virus and they were positive. For our knowledge this study represents first record of WNV inside wild mosquitoes in Sudan. PCR technique provided reliable information because specific primer-probe sets were used for the detection of the virus. Extra studies are required to incriminate these species of mosquitoes as potential vectors of WNV

    Citrus Waste as Source of Bioactive Compounds: Extraction and Utilization in Health and Food Industry

    No full text
    The current research was conducted to extract the bioactive compounds from citrus waste and assess their role in the development of functional foods to treat different disorders. The scientific name of citrus is Citrus L. and it belongs to the Rutaceae family. It is one of the most important fruit crops that is grown throughout the world. During processing, a large amount of waste is produced from citrus fruits in the form of peel, seeds, and pomace. Every year, the citrus processing industry creates a large amount of waste. The citrus waste is composed of highly bioactive substances and phytochemicals, including essential oils (EOs), ascorbic acid, sugars, carotenoids, flavonoids, dietary fiber, polyphenols, and a range of trace elements. These valuable compounds are used to develop functional foods, including baked products, beverages, meat products, and dairy products. Moreover, these functional foods play an important role in treating various disorders, including anti-aging, anti-mutagenic, antidiabetic, anti-carcinogenic, anti-allergenic, anti-oxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective activity. EOs are complex and contain several naturally occurring bioactive compounds that are frequently used as the best substitutes in the food industry. Citrus essential oils have many uses in the packaging and food safety industries. They can also be used as an alternative preservative to extend the shelf lives of different food products

    Citrus Waste as Source of Bioactive Compounds: Extraction and Utilization in Health and Food Industry

    No full text
    The current research was conducted to extract the bioactive compounds from citrus waste and assess their role in the development of functional foods to treat different disorders. The scientific name of citrus is Citrus L. and it belongs to the Rutaceae family. It is one of the most important fruit crops that is grown throughout the world. During processing, a large amount of waste is produced from citrus fruits in the form of peel, seeds, and pomace. Every year, the citrus processing industry creates a large amount of waste. The citrus waste is composed of highly bioactive substances and phytochemicals, including essential oils (EOs), ascorbic acid, sugars, carotenoids, flavonoids, dietary fiber, polyphenols, and a range of trace elements. These valuable compounds are used to develop functional foods, including baked products, beverages, meat products, and dairy products. Moreover, these functional foods play an important role in treating various disorders, including anti-aging, anti-mutagenic, antidiabetic, anti-carcinogenic, anti-allergenic, anti-oxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective activity. EOs are complex and contain several naturally occurring bioactive compounds that are frequently used as the best substitutes in the food industry. Citrus essential oils have many uses in the packaging and food safety industries. They can also be used as an alternative preservative to extend the shelf lives of different food products

    Evaluating estrus synchronization and early pregnancy detection in Ossimi sheep: The influence of fluorogestone acetate treatment duration and dosage

    No full text
    Estrus synchronization is important for improving sheep reproduction. To enhance sheep reproduction efficiency, this study investigated the impact of different durations (7 vs. 14 days) and fluorogestone acetate (FGA) doses in intravaginal sponges on estrus synchronization and early pregnancy detection in Ossimi sheep. Two hundred ewes were evenly divided into two groups, each receiving a full 40 mg or a halved 20 mg FGA sponge for their respective durations. The study aimed to optimize breeding efficiency by examining the effectiveness of these treatments in synchronizing estrous cycles and by evaluating the use of serum levels of pregnancy-associated glycoprotein 1 (PAG1) and progesterone (P4) as markers for early pregnancy identification. Prostaglandin F2α and equine chorionic gonadotropin were administered to enhance the synchronization process. Results highlighted that the 7-day treatment protocol significantly improved estrus, pregnancy, and lambing rates compared to the 14-day protocol. Furthermore, pregnant ewes demonstrated elevated levels of PAG1 and P4, with PAG1 levels particularly higher in ewes with multiple pregnancies. The findings underscore that the shorter duration of FGA treatment is more effective for reproductive management in Ossimi sheep without significantly affecting PAG1 levels based on the dose or duration of FGA. PAG1 also proved to be a reliable marker for early pregnancy detection, offering a promising approach to identifying fetal numbers early in pregnancy. This research suggests optimizing FGA sponge use could be cost-efficient for improving reproductive efficiency and early pregnancy management in sheep
    corecore