520 research outputs found

    On a Modification of the Boundary State Formalism in Off-shell String Theory

    Full text link
    We examine the application of boundary states in computing amplitudes in off-shell open string theory. We find a straightforward generalization of boundary state which produces the correct matrix elements with on-shell closed string states.Comment: Latex, 10 pages, refs added, minor typos correcte

    Fractional Exclusion Statistics and Anyons

    Full text link
    Do anyons, dynamically realized by the field theoretic Chern-Simons construction, obey fractional exclusion statistics? We find that they do if the statistical interaction between anyons and anti-anyons is taken into account. For this anyon model, we show perturbatively that the exchange statistical parameter of anyons is equal to the exclusion statistical parameter. We obtain the same result by applying the relation between the exclusion statistical parameter and the second virial coefficient in the non-relativistic limit.Comment: 9 pages, latex, IFT-498-UN

    Case studies and evidence-based approaches to addressing urban soil lead contamination

    Get PDF
    Urban soils in many communities in the United States and internationally have been contaminated by lead (Pb) from past use of lead additives in gasoline, deterioration of exterior paint, emissions from Pb smelters and battery recycling and other industries. Exposure to Pb in soil and related dust is widespread in many inner city areas. Up to 20–40% of urban children in some neighborhoods have blood lead levels (BLLs) equal to or above 5 μg per decilitre, the reference level of health concern by the U.S. Centers for Disease Control. Given the widespread nature of Pb contamination in urban soils it has proven a challenge to reduce exposure. In order to prevent this exposure, an evidence-based approach is required to isolate or remediate the soils and prevent children and adult's ongoing exposure. To date, the majority of community soil Pb remediation efforts have been focused in mining towns or in discrete neighborhoods where Pb smelters have impacted communities. These efforts have usually entailed very expensive dig and dump soil Pb remediation techniques, funded by the point source polluters. Remediating widespread non-point source urban soil contamination using this approach is neither economical nor feasible from a practical standpoint. Despite the need to remediate/isolate urban soils in inner city areas, no deliberate, large scale, cost effective Pb remediation schemes have been implemented to isolate inner city soils impacted from sources other than mines and smelters. However, a city-wide natural experiment of flooding in New Orleans by Hurricane Katrina demonstrated that declines in soil Pb resulted in major BLL reductions. Also a growing body of literature of smaller scale pilot studies and programs does exist regarding low cost efforts to isolate Pb contaminated urban soils. This paper reviews the literature regarding the effectiveness of soil Pb remediation for reducing Pb exposure and BLL in children, and suggests best practices for addressing the epidemics of low-level Pb poisoning occurring in many inner city areas

    Two-Loop Analysis of Non-abelian Chern-Simons Theory

    Get PDF
    Perturbative renormalization of a non-Abelian Chern-Simons gauge theory is examined. It is demonstrated by explicit calculation that, in the pure Chern-Simons theory, the beta-function for the coefficient of the Chern-Simons term vanishes to three loop order. Both dimensional regularization and regularization by introducing a conventional Yang-Mills component in the action are used. It is shown that dimensional regularization is not gauge invariant at two loops. A variant of this procedure, similar to regularization by dimensional reduction used in supersymmetric field theories is shown to obey the Slavnov-Taylor identity to two loops and gives no renormalization of the Chern-Simons term. Regularization with Yang-Mills term yields a finite integer-valued renormalization of the coefficient of the Chern-Simons term at one loop, and we conjecture no renormalization at higher order. We also examine the renormalization of Chern-Simons theory coupled to matter. We show that in the non-abelian case the Chern-Simons gauge field as well as the matter fields require infinite renormalization at two loops and therefore obtain nontrivial anomalous dimensions. We show that the beta function for the gauge coupling constant is zero to two-loop order, consistent with the topological quantization condition for this constant.Comment: 48 pages, UU/HEP/91/12; file format changed to standard Latex to solve the problem with printin

    No-Boundary Theta-Sectors in Spatially Flat Quantum Cosmology

    Full text link
    Gravitational theta-sectors are investigated in spatially locally homogeneous cosmological models with flat closed spatial surfaces in 2+1 and 3+1 spacetime dimensions. The metric ansatz is kept in its most general form compatible with Hamiltonian minisuperspace dynamics. Nontrivial theta-sectors admitting a semiclassical no-boundary wave function are shown to exist only in 3+1 dimensions, and there only for two spatial topologies. In both cases the spatial surface is nonorientable and the nontrivial no-boundary theta-sector unique. In 2+1 dimensions the nonexistence of nontrivial no-boundary theta-sectors is shown to be of topological origin and thus to transcend both the semiclassical approximation and the minisuperspace ansatz. Relation to the necessary condition given by Hartle and Witt for the existence of no-boundary theta-states is discussed.Comment: 30 p

    Thermodynamics of an Anyon System

    Get PDF
    We examine the thermal behavior of a relativistic anyon system, dynamically realized by coupling a charged massive spin-1 field to a Chern-Simons gauge field. We calculate the free energy (to the next leading order), from which all thermodynamic quantities can be determined. As examples, the dependence of particle density on the anyon statistics and the anyon anti-anyon interference in the ideal gas are exhibited. We also calculate two and three-point correlation functions, and uncover certain physical features of the system in thermal equilibrium.Comment: 18 pages; in latex; to be published in Phys. Rev.

    Topology, Decoherence, and Semiclassical Gravity

    Full text link
    We address the issue of recovering the time-dependent Schr\"{o}dinger equation from quantum gravity in a natural way. To reach this aim it is necessary to understand the nonoccurrence of certain superpositions in quantum gravity. We explore various possible explanations and their relation. These are the delocalisation of interference terms through interaction with irrelevant degrees of freedom (decoherence), gravitational anomalies, and the possibility of θ\theta states. The discussion is carried out in both the geometrodynamical and connection representation of canonical quantum gravity.Comment: 18 pages, ZU-TH 3/93, to appear in Phys. Rev.

    HARP/ACSIS: A submillimetre spectral imaging system on the James Clerk Maxwell Telescope

    Full text link
    This paper describes a new Heterodyne Array Receiver Programme (HARP) and Auto-Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope (JCMT). The 16-element focal-plane array receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three-dimensional) mapping speeds, along with significant improvements over single-detector counterparts in calibration and image quality. Receiver temperatures are \sim120 K across the whole band and system temperatures of \sim300K are reached routinely under good weather conditions. The system includes a single-sideband filter so these are SSB figures. Used in conjunction with ACSIS, the system can produce large-scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully-sampled maps of size 1 square degree can be observed in under 1 hour. The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large-scale unbiased surveys of galactic and extra-galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three-dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARP/ACSIS will provide highly complementary science programmes to wide-field continuum studies, and produce the essential preparatory work for submillimetre interferometers such as the SMA and ALMA.Comment: MNRAS Accepted 2009 July 2. 18 pages, 25 figures and 6 table

    Analytic Representation of Finite Quantum Systems

    Full text link
    A transform between functions in R and functions in Zd is used to define the analogue of number and coherent states in the context of finite d-dimensional quantum systems. The coherent states are used to define an analytic representation in terms of theta functions. All states are represented by entire functions with growth of order 2, which have exactly d zeros in each cell. The analytic function of a state is constructed from its zeros. Results about the completeness of finite sets of coherent states within a cell are derived
    corecore