62 research outputs found

    Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1

    Get PDF
    During the course of many chronic viral infections, the antiviral T cell response becomes attenuated through a process that is regulated in part by the host. While elevated expression of the immunosuppressive cytokine IL-10 is involved in the suppression of viral-specific T cell responses, the relevant cellular sources of IL-10, as well as the pathways responsible for IL-10 induction, remain unclear. In this study, we traced IL-10 production over the course of chronic lymphocytic choriomeningitis virus (LCMV) infection in an IL-10 reporter mouse line. Using this model, we demonstrated that virus-specific T cells with reduced inflammatory function, particularly Th1 cells, display elevated and sustained IL-10 expression during chronic LCMV infection. Furthermore, ablation of IL-10 from the T cell compartment partially restored T cell function and reduced viral loads in LCMV-infected animals. We found that viral persistence is needed for sustained IL-10 production by Th1 cells and that the transcription factor BLIMP-1 is required for IL-10 expression by Th1 cells. Restimulation of Th1 cells from LCMV-infected mice promoted BLIMP-1 and subsequent IL-10 expression, suggesting that constant antigen exposure likely induces the BLIMP-1/IL-10 pathway during chronic viral infection. Together, these data indicate that effector T cells self-limit their responsiveness during persistent viral infection via an IL-10-dependent negative feedback loop.This work was supported by an Australian NHMRC Overseas Biomedical Postdoctoral Fellowship (to I.A. Parish); a Yale School of Medicine Brown-Coxe Postdoctoral Fellowship (to I.A. Parish); the Alexander von Humboldt Foundation (SKA2010, to P.A. Lang); a CIHR grant (to P.S. Ohashi); and by the Howard Hughes Medical Institute and NIH grant RO1AI074699 (to S.M. Kaech). P.S. Ohashi holds a Canada Research Chair in Autoimmunity and Tumor immunity

    SARS-CoV-2 booster vaccination rescues attenuated IgG1 memory B cell response in primary antibody deficiency patients

    Get PDF
    BACKGROUND: Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination. METHODS: Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination. RESULTS: After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4 CONCLUSION: Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells.

    Get PDF
    Identification of germinal center (GC) B cells is typically reliant on the use of surface activation markers that exhibit a wide range of expression. Here, we identify Ephrin-B1, a ligand for Eph-related receptor tyrosine kinases, as a specific marker of mature GC B cells. The number of Ephrin-B1+ GC B cells increases during the course of an immune response with Ephrin-B1+ GC B cells displaying elevated levels of Bcl6, S1pr2, and Aicda relative to their Ephrin-B1- counterparts. We further identified a small proportion of recently dividing, somatically mutated Ephrin-B1+ GC B cells that have begun to down-regulate Bcl6 and S1pr2 and express markers associated with memory B cells, such as CD38 and EBI2. Transcriptional analysis indicates that these cells are developmentally related to memory B cells, and likely represent a population of GC memory precursor (PreMem) B cells. GC PreMem cells display enhanced survival relative to bulk GC B cells, localize near the edge of the GC, and are predominantly found within the light zone. These findings offer insight into the significant heterogeneity that exists within the GC B cell population and provide tools to further dissect signals regulating the differentiation of GC B cells
    corecore