18 research outputs found

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces

    Application of renormalized coupled-cluster methods to potential function of water

    Get PDF
    Abstract The goal of this paper is to examine the performance of the conventional and renormalized single-reference coupled-cluster (CC) methods in calculations of the potential energy surface of the water molecule. A comparison with the results of the internally contracted multi-reference configuration interaction calculations including the quasi-degenerate Davidson correction (MRCI(Q)) and the spectroscopically accurate potential energy surface of water resulting from the use of the energy switching (ES) approach indicates that the relatively inexpensive completely renormalized (CR) CC methods with singles (S), doubles (D), and a non-iterative treatment of triples (T) or triples and quadruples (TQ), such as CR-CCSD(T), CR-CCSD(TQ), and the recently developed rigorously size extensive extension of CR-CCSD(T), termed CR-CC(2,3), provide substantial improvements in the results of conventional CCSD(T) and CCSD(TQ) calculations at larger internuclear separations. It is shown that the CR-CC(2,3) results corrected for the effect of quadruply excited clusters through the CR-CC(2,3)+Q approach can compete with the highly accurate MRCI(Q) data. The excellent agreement between the CR-CC(2,3)+Q and MRCI(Q) results suggests ways of improving the global potential energy surface of water resulting from the use of the ES approach in the regions of intermediate bond stretches and intermediate energies connecting the region of the global minimum with the asymptotic regions
    corecore