68 research outputs found

    Effective TiO2-Sulfonated Carbon-derived from Eichhornia crassipes in The Removal of Methylene Blue and Congo Red Dyes from Aqueous Solution

    Get PDF
    The study of TiO2-sulfonated carbon-derived from Eichhornia crassipes (TiO2/SCEC), as an effective adsorbent to remove Methylene blue (MB) and Congo red (CR) dyes from aqueous solution, has been conducted. The preparation steps of TiO2/SCEC adsorbent involved the carbonisation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation of carbon for 3 h and impregnation through titanium(IV) isopropoxide (500 ”mol). The physical properties of the adsorbents were characterized by using X-ray fluorescence (XRF), Fourier transform infrared, X-ray diffraction (XRD), Scanning electron microscopy with Energy dispersive X-ray (SEM-EDX), Thermogravimetric analysis (TGA) and nitrogen adsorption-desorption studies. The dye removal study using TiO2/SCEC adsorbent was carried out by varying of contact time, adsorbent dosage, initial dye concentration, pH, particles size of adsorbent and temperature. The kinetics models were determined by the effects of contact time and the thermodynamic parameters (ΔH, ΔS, and ΔG), which were calculated by the effects of temperature. The results showed that the maximum dye removal capacity of TiO2/SCEC were 18.8 mg.g-1 for MB and 36.5 mg.g-1 for CR. The removal of MB and CR dyes using TiO2/SCEC adsorbent performed a pseudo-second order kinetic models with spontaneity. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Environmental Footprint Assessment of Methylene Blue Photodegradation using Graphene-based Titanium Dioxide

    Get PDF
    To date, photocatalysis has received much attention in terms of the degradation of organic pollutants in wastewater. Various studies have shown that graphene-based photocatalysts are one of the impressive options owing to their intriguing features, including high surface area, good conductivity, low recombination rate of electron-hole pair, and fast charge separation and transfer. However, the environmental impacts of the photocatalysts synthesis and their photodegradation activity remain unclear. Thus, this report aims to identify the environmental impacts associated with the photodegradation of methylene blue (MB) over reduced graphene oxide/titanium oxide photocatalyst (TiO2/rGO) using Life Cycle Assessment (LCA). The life cycle impacts were assessed using ReCiPe 2016 v1.1 midpoint method, Hierachist version in Gabi software. A cradle-to-gate approach and a functional unit of 1 kg TiO2/rGOwere adopted in the study. Several important parameters, such as the solvent type (ultrapure water, ethanol, and isopropanol), with/without silver ion doping, and visible light power consumption (150, 300, and 500 W) were evaluated in this study. In terms of the selection of solvent, ultrapure water is certainly a better choice since it contributed the least negative impact on the environment. Furthermore, it is not advisable to dope the photocatalyst with silver ions since the increment in performance is insufficient to offset the environmental impact that it caused. The results of different power of visible light for MB degradation showed that the minimum power level, 150 W, could give a comparable photodegradation efficiency and better environmental impacts compared to higher power light sources. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Catalytic Performance of TiO2–Carbon Mesoporous-Derived from Fish Bones in Styrene Oxidation with Aqueous Hydrogen Peroxide as an Oxidant

    Get PDF
    The catalytic performance of titania-supported carbon mesoporous-derived from fish bones (TiO2/CFB) has been investigated in styrene oxidation with aqueous H2O2. The preparation steps of (TiO2/CFB) catalyst involved the carbonization of fish bones powder at 500 °C for 2 h. followed by impregnation of titania using titanium(IV) isopropoxide (500 ”mol) precursor, and calcined at 350 °C for 3 h. The physical properties of the adsorbents were characterized using Fourier transform infrared, X-ray diffraction (XRD), Scanning electron microscopy with energy dispersive X-ray (SEM-EDX), and nitrogen adsorption-desorption studies. The catalytic test was carried out using styrene oxidation with H2O2 as an oxidant at room temperature for 24 h. Its catalytic activity was compared with Fe2O3/CFB, CuO/CFB, TiO2, and CFB catalysts. It is demonstrated that the catalytic activity of TiO2/CFB catalyst has the highest compared to Fe2O3/CFB, CuO/CFB, TiO2, and CFB catalysts in the oxidation of styrene with styrene conversion ~23% and benzaldehyde selectivity ~90%. Kinetics of TiO2/CFB catalyzed oxidation of styrene has been investigated and mechanism for oxidation of styrene has been proposed. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0).

    Thermodynamic Study of One-step Production from Isobutene to Methyl Methacrylate

    Get PDF
    Methyl methacrylate (MMA) has emerged as an essential industrial monomer. However, the toxic by-production and shortage supply of MMA in the global market has gained great attention. Herein, a one-step synthesis to produce MMA from isobutene via a direct oxidative esterification process has been demonstrated to curb the aforementioned downsides. Thermodynamic analysis via Gibbs free energy minimization method proved the feasibility of this route via the equilibrium constant. Despite tert-butanol and isobutane showed higher equilibrium constant than isobutene, they should be avoided. Isobutane is highly flammable while the precursor of tert-butanol is exorbitant. Thus, isobutene was selected for the equilibrium compositions screening. Isobutene conversion was 90% and 15% MMA yield at 700 °C and IBN: O2: MeOH ratio with 1:7:1. This route is mainly limited by the generation of side reactions from the reaction of CH3OH and O2. By varying the feedstock ratio at 1:2:1, the MMA yield increased to ~25%. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Synergistic Ti-Fe Oxides on Fishbone-Derived Carbon Sulfonate: Enhanced Styrene Oxidation Catalysis

    Get PDF
    Fishbone-derived carbon sulfonate, modified through incipient wetness impregnation with titanium tetraisopropoxide and iron nitrate salts, displays catalytic activity in the oxidation of styrene with hydrogen peroxide (H2O2) as an oxidant. This was done to develop a cost-effective, non-toxic, and environmentally friendly bimetallic oxide catalyst, incorporating titanium and iron oxides on mesoporous-derived carbon fishbone to enhance styrene conversion and benzaldehyde selectivity in styrene oxidation using aqueous H2O2. The catalyst, featuring a combination of titanium and iron oxides on the surface of the fishbone-derived carbon sulfonate, demonstrates higher catalytic activity than single oxide catalysts, such as titanium or iron oxides alone. Factors influencing the catalyst's performance are investigated by using FTIR, XRD, XRF, SEM, and BET surface area. The results reveal that the presence of both titanium and iron oxides on the surface of the fishbone-derived carbon sulfonate and the catalyst's surface area creates a synergistic effect, the primary factors affecting its catalytic activity in styrene oxidation using H2O2 as an oxidant

    Screening for fear of cancer recurrence : instrument validation and current status in early stage lung cancer patients

    Get PDF
    Background Fear of cancer recurrence (FCR) is one of the most distressing concerns for cancer patients. A psychometrically validated brief scale is urgently needed for use in busy clinical oncology settings. This study aimed to (1) develop and validate the 7-item fear of cancer recurrence scale Chinese version (FCR7-C), and (2) explore the severity of FCR in post-operative early-stage lung cancer patients in Taiwan. Methods Early-stage lung cancer patients were recruited from a medical center in Taiwan. The FCR7-C was evaluated for content and construct validity and internal consistency reliability. Construct validity of FCR7-C was determined by the empirically supported correlation and confirmatory factor analysis (CFA). Results A total of 160 subjects were recruited. The FCR7-C was shown to have satisfactory content validity and internal consistency reliability (Cronbach's α = 0.9). The uni-dimensional structure was confirmed by CFA that showed a good fit for the model. The FCR7-C score correlates positively with the degree of most of the physical symptoms, anxiety, and depression, but correlates negatively with patient age, performance status, and quality of life. We found that 81.9% of patients reported at least some FCR, with a mean FCR severity of 15.18 (SD = 7.78). Conclusion FCR7-C is a brief screening tool with good psychometrics. Patients with early-stage lung cancer still revealed mild to moderate level of FCR. Applying the FCR7-C for to screen cancer patients’ distress and further develop personalized psychological interventions would be strongly suggested.Publisher PDFPeer reviewe

    Synergistic role of Lewis and Brönsted acidities in Friedel-Crafts alkylation of resorcinol over gallium-zeolite beta

    Get PDF
    The role of Lewis and Brönsted acidities in alkylation of resorcinol is demonstrated through the galliumzeolite beta by varying the amount of Lewis and Brönsted acid sites. The synergism of Lewis and Brönsted acid sites takes place heterogeneously in Friedel-Crafts alkylation of resorcinol with methyl tert-butyl ether to produce 4-tert-butyl resorcinol and 4,6-di-tert-butyl resorcinol as the major and minor products, respectively

    Activated Bledug Kuwu’s Clay as Adsorbent Potential for Synthetic Dye Adsorption: Kinetic and Thermodynamic Studies

    Get PDF
    Bledug Kuwu is one of the geological phenomena as a mud volcano that occurs in Kuwu, Purwodadi, Grobogan, Central Java, Indonesia. The evaluation of Bledug Kuwu’s clay as one of the adsorbents for synthetic dyes has been carried out. The preparation of the adsorbent started with washing the clay with distilled water, followed by activation with a solution of hydrochloric acid (1 M) under mechanistic stirring for overnight. The C−H and O−H groups found on the clay adsorbent could attract methylene blue by dispersion forces and hydrogen bonding. Hydrocloric acid activation process for clay can increase surface area from 49 to 70 m2.g−1, meanwhile, reducing the average crystal size from 48.3 to 43.4 nm. The dye removal capacity increased from 34 to 40 mg.g−1 in corresponding to the increase of the temperature from 30 to 50 °C. The results showed that the equilibrium adsorption capacity of activated Bledug Kuwu’s clay reached 99% in an adsorption time of 20 min. The kinetic models of methylene blue adsorption onto BKC and ABKC adsorbents follow the pseudo-second order and the adsorption process is spontaneous with free energy (ΔG) as −23.519 kJ.mol−1. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Characterization of Al-Doped ZnO Transparent Conducting Thin Film Prepared by Off-Axis Magnetron Sputtering

    Get PDF
    The off-axis sputtering technique was used to deposit Al-doped ZnO (AZO) films on glass substrates at room temperature. For the illustration of the sample position in the sputtering chamber, the value of R/r is introduced. Here, r is the radius of AZO target and R is the distance between the sample and the center of substrate holder. A systematic study for the effect of deposition parameters on structural, optical, and electrical properties of AZO films has been investigated in detail. As the sample position of R/r is fixed at 1.8, it is found that the as-deposited AZO film has relatively low resistivity of 2.67 × 10−3 Ω-cm and high transmittance above 80% in the visible region. Additionally, after rapid thermal annealing (RTA) at 600°C with N2 atmosphere, the resistivity of this AZO film can be further reduced to 1.19 × 10−3 Ω-cm. This indicates the AZO films prepared by off-axis magnetron sputtering and treated via the appropriate RTA process have great potential in optoelectronic applications
    • 

    corecore