715 research outputs found

    Path relinking for the fixed spectrum frequency assignment problem

    Get PDF
    The fixed spectrum frequency assignment problem (FS-FAP) is a highly relevant application in modern wireless systems. This paper presents the first path relinking (PR) approach for solving FS-FAP. We devise four relinking operators to generate intermediate solutions (or paths) and a tabu search procedure for local optimization. We also adopt a diversity-and-quality technique to maintain population diversity. To show the effectiveness of the proposed approach, we present computational results on the set of 42 benchmark instances commonly used in the literature and compare them with the current best results obtained by any other existing methods. By showing improved best results (new upper bounds) for 19 instances, we demonstrate the effectiveness of the proposed PR approach. We investigate the impact of the relinking operators and the population updating strategy. The ideas of the proposed could be applicable to other frequency assignment problems and search problems

    Backtracking based iterated tabu search for equitable coloring

    Get PDF
    An equitable k  -coloring of an undirected graph G=(V,E)G=(V,E) is a partition of its vertices into k disjoint independent sets, such that the cardinalities of any two independent sets differ by at most one. As a variant of the graph coloring problem (GCP), the equitable coloring problem (ECP) concerns finding a minimum k for which an equitable k-coloring exists. In this work, we propose a backtracking based iterated tabu search (BITS) algorithm for solving the ECP approximately. BITS uses a backtracking scheme to define different k-ECP instances, an iterated tabu search approach to solve each particular k-ECP instance for a fixed k, and a binary search approach to find a suitable initial value of k. We assess the algorithm׳s performance on a set of commonly used benchmarks. Computational results show that BITS is very competitive in terms of solution quality and computing efficiency compared to the state-of-the-art algorithm in the literature. Specifically, BITS obtains new upper bounds for 21 benchmark instances, while matching the previous best upper bound for the remaining instances. Finally, to better understand the proposed algorithm, we study how its key ingredients impact its performance

    Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem

    Get PDF
    The multidemand multidimensional knapsack problem (MDMKP) is a significant generalization of the popular multidimensional knapsack problem with relevant applications. In this work we investigate for the first time how solution-based tabu search can be used to solve this computationally challenging problem. For this purpose, we propose a two-stage search algorithm, where the first stage aims to locate a promising hyperplane within the whole search space and the second stage tries to find improved solutions by exploring the reduced subspace defined by the hyperplane. Computational experiments on 156 benchmark instances commonly used in the literature show that the proposed algorithm competes favorably with the state-of-the-art results. We analyze several key components of the algorithm to highlight their impacts on the performance of the algorithm

    A study of two evolutionary/tabu search approaches for the generalized max-mean dispersion problem

    Get PDF
    Evolutionary computing is a general and powerful framework for solving difficult optimization problems, including those arising in expert and intelligent systems. In this work, we investigate for the first time two hybrid evolutionary algorithms incorporating tabu search for solving the generalized max-mean dispersion problem (GMaxMeanDP) which has a variety of practical applications such as web page ranking, community mining, and trust networks. The proposed algorithms integrate innovative search strategies that help the search to explore the search space effectively. We report extensive computational results of the proposed algorithms on six types of 160 benchmark instances, demonstrating their effectiveness and usefulness. In addition to the GMaxMeanDP, the proposed algorithms can help to better solve other problems that can be formulated as the GMaxMeanDP

    Adaptive feasible and infeasible tabu search for weighted vertex coloring

    Get PDF
    The Weighted Vertex Coloring Problem of a vertex weighted graph is to partition the vertex set into k disjoint independent sets such that the sum of the costs of these sets is minimized, where the cost of each set is given by the maximum weight of a vertex (representative) in that set. To solve this NP-hard problem, we present the adaptive feasible and infeasible search algorithm (AFISA) that relies on a mixed search strategy exploring both feasible and infeasible solutions. From an initial feasible solution, AFISA seeks improved solutions by oscillating between feasible and infeasible regions. To prevent the search from going too far from feasibility boundaries, we introduce a control mechanism that adaptively makes the algorithm to go back and forth between feasible and infeasible solutions. To explore the search space, we use a tabu search optimization procedure to ensure an intensified exploitation of candidate solutions and an adaptive perturbation strategy to escape local optimum traps. We show extensive experimental results on 161 benchmark instances and present new upper bounds that are useful for future studies. We assess the benefit of the key features of the proposed approach. This work demonstrates that examining both feasible and infeasible solutions during the search is a highly effective search strategy for the considered coloring problem and could beneficially be applied to other constrained problems as well

    Solution-based Tabu Search for the Maximum Min-sum Dispersion Problem

    Get PDF
    The maximum min-sum dispersion problem (Max-Minsum DP) is an important representative of a large class of dispersion problems. Having numerous applications in practice, the NP-hard Max-Minsum DP is however computationally challenging. This paper introduces an effective solution-based tabu search (SBTS) algorithm for solving the Max-Minsum DP approximately. SBTS is characterized by the joint use of hash functions to determine the tabu status of candidate solutions and a parametric constrained swap neighborhood to enhance computational efficiency. Experimental results on 140 benchmark instances commonly used in the literature demonstrate that the proposed algorithm competes favorably with the state-of-the-art algorithms both in terms of solution quality and computational efficiency. In particular, SBTS improves the best-known results for 80 out of the 140 instances, while matching 51 other best-known solutions. We conduct a computational analysis to identify the respective roles of the hash functions and the parametric constrained swap neighborhood

    A two-phase tabu-evolutionary algorithm for the 0–1 multidimensional knapsack problem

    Get PDF
    The 0–1 multidimensional knapsack problem is a well-known NP-hard combinatorial optimization problem with numerous applications. In this work, we present an effective two-phase tabu-evolutionary algorithm for solving this computationally challenging problem. The proposed algorithm integrates two solution-based tabu search methods into the evolutionary framework that applies a hyperplane-constrained crossover operator to generate offspring solutions, a dynamic method to determine search zones of interest, and a diversity-based population updating rule to maintain a healthy population. We show the competitiveness of the proposed algorithm by presenting computational results on the 281 benchmark instances commonly used in the literature. In particular, in a computational comparison with the best algorithms in the literature on multiple data sets, we show that our method on average matches more than twice the number of best known solutions to the harder problems than any other method and in addition yields improved best solutions (new lower bounds) for 4 difficult instances. We investigate two key ingredients of the algorithm to understand their impact on the performance of the algorithm

    Intensification-driven tabu search for the minimum differential dispersion problem

    Get PDF
    The minimum differential dispersion problem is a NP-hard combinatorial optimization problem with numerous relevant applications. In this paper, we propose an intensification-driven tabu search algorithm for solving this computationally challenging problem by integrating a constrained neighborhood, a solution-based tabu strategy, and an intensified search mechanism to create a search that effectively exploits the elements of intensification and diversification. We demonstrate the competitiveness of the proposed algorithm by presenting improved new best solutions for 127 out of 250 benchmark instances (>50%). We study the search trajectory of the algorithm to shed light on its behavior and investigate the spatial distribution of high-quality solutions in the search space to motivate the design choice of the intensified search mechanism

    A tabu search based memetic algorithm for the max-mean dispersion problem

    Get PDF
    Given a set V of n   elements and a distance matrix [dij]n×n[dij]n×n among elements, the max-mean dispersion problem (MaxMeanDP) consists in selecting a subset M from V such that the mean dispersion (or distance) among the selected elements is maximized. Being a useful model to formulate several relevant applications, MaxMeanDP is known to be NP-hard and thus computationally difficult. In this paper, we present a tabu search based memetic algorithm for MaxMeanDP which relies on solution recombination and local optimization to find high quality solutions. One key contribution is the identification of the fast neighborhood induced by the one-flip operator which takes linear time. Computational experiments on the set of 160 benchmark instances with up to 1000 elements commonly used in the literature show that the proposed algorithm improves or matches the published best known results for all instances in a short computing time, with only one exception, while achieving a high success rate of 100%. In particular, we improve 53 previous best results (new lower bounds) out of the 60 most challenging instances. Results on a set of 40 new large instances with 3000 and 5000 elements are also presented. The key ingredients of the proposed algorithm are investigated to shed light on how they affect the performance of the algorithm

    Iterated variable neighborhood search for the capacitated clustering problem

    Get PDF
    The NP-hard capacitated clustering problem (CCP) is a general model with a number of relevant applications. This paper proposes a highly effective iterated variable neighborhood search (IVNS) algorithm for solving the problem. IVNS combines an extended variable neighborhood descent method and a randomized shake procedure to explore effectively the search space. The computational results obtained on three sets of 133 benchmarks reveal that the proposed algorithm competes favorably with the state-of-the-art algorithms in the literature both in terms of solution quality and computational efficiency. In particular, IVNS discovers an improved best known result (new lower bounds) for 28 out of 83 most popular instances, while matching the current best known results for the remaining 55 instances. Several essential components of the proposed algorithm are investigated to understand their impacts on the performance of algorithm
    corecore