19 research outputs found

    Fresnel laws at curved dielectric interfaces of microresonators

    Get PDF
    We discuss curvature corrections to Fresnel's laws for the reflection and transmission of light at a non-planar refractive-index boundary. The reflection coefficients are obtained from the resonances of a dielectric disk within a sequential-reflection model. The Goos-H\"anchen effect for curved light fronts at a planar interface can be adapted to provide a qualitative and quantitative extension of the ray model which explains the observed deviations from Fresnel's laws.Comment: submitted to Phys. Rev.

    Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes

    No full text
    Extrinsic atoms were doped into multiwalled carbon nanotubes (MWCNTs) using microwave plasma-enhanced chemical vapor deposition. Doped nitrogen atoms alter the original parallel graphenes into highly curved ones including some fullerene-like structures. Doped nitrogen atoms could replace carbon atoms in MWCNTs and therefore increase the electronic density that enhances the electron field emission properties. On the other hand, the incorporation of boron into the carbon network apparently increases the concentration of electron holes that become electron traps and eventually impedes the electron field emission properties. Fowler-Nordheim plots show two different slopes in the curve, indicating that the mechanism of field emission is changed from low to high bias voltages. beta values could be increased by an amount of 42% under low bias voltages and 60% under high bias voltages in the N-doped MWCNTs, but decreased by an amount of 8% under low bias region and 68% under high bias voltage in the B-doped MWCNTs. (C) 2003 American Institute of Physics
    corecore