3,593 research outputs found

    Spatiotemporal patterns and predictability of cyberattacks

    Full text link
    A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term "spatio" refers to the IP address space. In particular, we focus on analyzing {\em macroscopic} properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack "fingerprints" and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches

    The fundamental benefits of multiplexity in ecological networks

    Get PDF
    Acknowledgements and Funding Statement YM was supported Max Planck Society, and was partially supported by the University of Aberdeen Elphinstone Fellowship at earlier stages of this work. The work at Arizona State University was supported by Office of Naval Research under Grant No. N00014-21-1-2323.Peer reviewedPostprin

    Tipping point and noise-induced transients in ecological networks

    Get PDF
    Funding: Y.M. was partially supported by the University of Aberdeen Elphinstone Fellowship. Y.-C.L. would like to acknowledge support from the Vannevar Bush Faculty Fellowship Program sponsored by the Basic Research Office of the Assistance Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through grant no. N00014-16-1-2828Peer reviewedPostprin

    Three-Phase Detection and Classification for Android Malware Based on Common Behaviors

    Get PDF
    Android is one of the most popular operating systems used in mobile devices. Its popularity also renders it a common target for attackers. We propose an efficient and accurate three-phase behavior-based approach for detecting and classifying malicious Android applications. In the proposed approach, the first two phases detect a malicious application and the final phase classifies the detected malware. The first phase quickly filters out benign applications based on requested permissions and the remaining samples are passed to the slower second phase, which detects malicious applications based on system call sequences. The final phase classifies malware into known or unknown types based on behavioral or permission similarities. Our contributions are three-fold: First, we propose a self-contained approach for Android malware identification and classification. Second, we show that permission requests from an Application are beneficial to benign application filtering. Third, we show that system call sequences generated from an application running inside a virtual machine can be used for malware detection. The experiment results indicate that the multi-phase approach is more accurate than the single-phase approach. The proposed approach registered true positive and false positive rates of 97% and 3%, respectively. In addition, more than 98% of the samples were correctly classified into known or unknown types of malware based on permission similarities.We believe that our findings shed some lights on future development of malware detection and classification
    corecore