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Tipping point and noise-induced transients in ecological
networks

Yu Meng1, Ying-Cheng Lai2,3 & Celso Grebogi1

1Institute for Complex Systems and Mathematical Biology, School of Natural and Computing
Sciences, King’s College, University of Aberdeen, AB24 3UE, UK
2School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Ari-
zona 85287, USA
3Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

A challenging and outstanding problem in interdisciplinary research is to understand the in-
terplay between transients and stochasticity in high-dimensional dynamical systems. Focus-
ing on the tipping-point dynamics in complex mutualistic networks in ecology constructed
from empirical data, we investigate the phenomena of noise-induced collapse and noise-
induced recovery. Two types of noise are studied: environmental (Gaussian white) noise and
state-dependent demographic noise. The dynamical mechanism responsible for both phe-
nomena is a transition from one stable steady state to another driven by stochastic forcing,
mediated by an unstable steady state. Exploiting a generic and effective two-dimensional re-
duced model for real-world mutualistic networks, we find that the average transient lifetime
scales algebraically with the noise amplitude, for both environmental and demographic noise.
We develop a physical understanding of the scaling laws through an analysis of the mean first
passage time from one steady state to another. The phenomena of noise-induced collapse and
recovery and the associated scaling laws have implications to managing high-dimensional
ecological systems.

Key words: transients, stochasticity, tipping point, mutualistic networks, species collapse, species
recovery, scaling laws, nonlinear dynamics, complex networks

Introduction

In ecology, to predict the state of the system in the future is critical to sustainable ecosystem man-
agement 1. Long-term prediction is also of paramount importance to fields such as epidemiology
and climate science. In the real world, the ability to predict the future of the system is often hin-
dered by a number of factors, among which transients, stochasticity, and high dimensionality stand
out as some of the most daunting challenges. To understand the complex interplay among the three
factors is of fundamental importance to ecology and related fields, but this has remained to be an
outstanding problem in interdisciplinary research. The purpose of this paper is to present a case
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study to gain significant insights into the interplay among transients, stochasticity and high dimen-
sionality. In particular, utilizing complex, high-dimensional ecological networks as a paradigmatic
model, we investigate the phenomenon of noise induced transients associated with tipping-point
dynamics and uncover the scaling laws characterizing the dependence of the average transient
lifetime on the noise amplitude.

Transients in ecological systems. Transient behaviors are ubiquitous in chaotic systems 2, 3,
and their importance to ecology has been increasingly recognized 4–10. In ecological systems, the
phenomenon of “regime shift,” where a qualitative change in the dynamical state occurs suddenly
with no warning 11–13, is particularly devastating because, (1) any understanding of the system
based on observations made before the regime shift would become irrelevant, (2) its time of occur-
rence is highly unpredictable, and (3) it often results in population collapse and species extinction.
On the dynamical origin of regime shift, the traditional view is that it is due to parameter drifting,
but it has been proposed that regime shift can be the consequence of transient dynamics without
requiring any parameter change 9, 10.

Stochasticity in ecological systems. In the real-world ecological environment, the population
dynamics are under inevitable and constant influences of random disturbances. It has been known
for a long time that stochasticity can affect species abundance in terms of its size, dynamics and re-
silience 9, 14–28. As different species in an ecosystem interact with each other through a complicated
pattern, the extinction of one species as caused by stochasticity can lead to the extinction of other
species that are linked to it. Likewise, external perturbations leading to improved environmental
conditions can make certain species to recover their abundance from near zero values which, in
turn, can lead to the recovery of the mutually interacting species 29.

There are two main types of stochastic perturbations in ecological systems: those due to
changes in the environmental conditions (external) and those caused by variations in the popula-
tions themselves (internal). The environmental stochasticity has a direct impact on the birth rate
and mortality of the species and can be modeled as additive Gaussian white noise 30, 31, while the
internal stochasticity is due to the inherent uncertainties related to individual reproduction, growth,
death, competition and migration within the species and is thus demographic 21, 32–35, representing
correlated or “colored” noises. Mathematically, a demographic stochastic process can be modeled
as a type of multiplicative noise with strength proportional to the square root of the fluctuating
abundance. In the present work, both types of stochasticity are studied.

High dimensionality of ecological systems. Ecosystems are typically high-dimensional and
complex. To be concrete, we shall focus on mutualistic interaction networks 29, 36–45. In gen-
eral, mutualism is referred to as a close, interdependent, mutually beneficial relationship between
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two species. Mutualistic interactions are one of the most important interspecific relationships in
ecosystems. For instance, the corals and the single-celled zooxanthellae that form the huge coral
reefs are in a mutualistic relationship, where the zooxanthellae provide nutrients to their host and
in return receive essential nourishment in a process associated with reef-building corals. On land,
mutualistic interactions are fundamental to species diversity, such as the network of pollinators and
plants. Because of the typically large number of species involved in the mutualistic interactions,
the underlying networked system is a high-dimensional nonlinear dynamical system.

In this paper, employing complex mutualistic networks subject to environmental and demo-
graphic noises, we set out to unveil and decipher the interplay among transients, stochasticity,
and high dimensionality. While this setting naturally has the elements of high dimensionality and
stochasticity, where do transients come from? To generate transient dynamics, we focus on the
parameter regime where the networked system exhibits a tipping point 13, 39, 43, 44, 46–58. Especially,
as a bifurcation parameter changes, the system can exhibit a transition from a survival state to an
extinction state, or vice versa. To be concrete, we choose the normalized species decay rate κ as
the bifurcation parameter. For a collapse leading to species extinction, e.g., caused by continuous
deterioration of the environment so that the value of κ keeps increasing (the forward direction),
the system remains in the survival state for κ < κ0c and becomes extinct for κ > κ0c , where κ0c
is the critical point. Similarly, for the recovery process triggered by continuously improving the
environment so that the value of κ keeps decreasing (the backward direction), the system is in an
extinction state for κ > κ0r but the species abundances are recovered for κ < κ0r , where κ0r is the
critical point. Note that the critical points κ0c and κ0r are often different, due to the emergence of a
hysteresis loop. Stochasticity can change this deterministic picture: in the forward direction, even
for κ < κ0c , a transition from the survival state to extinction can occur, whereas in the backward
direction, the system can transition to a survival state from an extinction state even for κ > κ0r .
These noise-induced transitions, of course, do not occur instantaneously but rather requires cer-
tain time to complete, leading to transients. The setting of our study is thus adequately suited
for addressing the intricate interplay among transients, stochasticity, and high dimensionality in
ecological systems.

Our main results are as follows. Firstly, utilizing the full, high-dimensional empirical mu-
tualistic networks constructed from data from four geographical regions subject to stochastic in-
fluences as modeled by environmental and demographic noises, we demonstrate the phenomena
of noise-induced collapse and recovery. Secondly, we search for any possible scaling relation
between the average transient time and the noise amplitude. To render the task computationally
feasible, we take advantage of an effective 2D model that was previously derived and demonstrated
to capture the essential dynamical behaviors associated with tipping point transitions in mutualistic
networks 43. Extensive numerical simulations indicate that the scaling relation is algebraic for both

3

Page 4 of 25

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

types of noise. Thirdly, exploiting the basic, saddle-node based nonlinear dynamical picture under-
lying the two noise-induced transition phenomena, we argue that the average transient lifetime is
essentially the mean first passage time from one steady state to another driven by noise. We obtain
formulas for this time and demonstrate that the formulas give the algebraic scaling as observed
from direct numerical simulations.

The uncovered phenomena of noise-induced collapse and recovery and the associated alge-
braic scaling law of the average transient lifetime with the noise amplitude represent a quantitative
characterization of the interplay between stochasticity and transients in high-dimensional ecolog-
ical systems. In addition, our analysis reveals that demographic noise plays a dominant role in
causing a system to collapse, while environmental noise is key to species recovery. These results
have implications to managing high-dimensional ecosystems. For example, in order to prevent a
healthy system from collapsing to extinction, reducing demographic noise would be effective. On
the contrary, if the system is already in extinction, supplying an appropriate level of environmental
noise could facilitate recovery.

Model of stochastic mutualistic networks

We extend the deterministic model 39–43 for complex mutualistic networks of plant and pollinator
species to include environmental white and demographic noises 29:

dXi

dt
= α

(X)
i Xi − κ(X)

i Xi −
SX∑
j=1

β
(X)
ij XiXj +

∑SY
k=1 γ

(X)
ik Yk

1 + h
∑SY

k=1 γ
(X)
ik Yk

Xi + µX (1)

+
√
V (Xi)dBi(t),

dYi
dt

= α
(Y )
i Yi −

SY∑
j=1

β
(Y )
ij YiYj +

∑SX
k=1 γ

(Y )
ik Xk

1 + h
∑SX

k=1 γ
(Y )
ik Xk

Yi + µY (2)

+
√
U(Yi)dBi(t),

where Xi and Yi are the abundances of the ith pollinator and ith plant, respectively, α(X)
i and α(Y )

i

are the intrinsic growth rates in the absence of intraspecific competition and any mutualistic ef-
fect, βii and βij (i 6= j) are parameters quantifying intraspecific and interspecific competitions,
respectively, and the parameters µX ' 0 and µY ' 0 characterize species migration. For the
pollinator-plant system, intraspecific competition is typically stronger than interspecific competi-
tion 39, 40: βii � βij . The saturation effect is taken into account by the constant h, which is the
half-saturation density of the Holling type-II functional response 59. The beneficial effect of the in-
teractions on the population growth saturates when the mutualistic partners have a high abundance.
The parameters γ(X)

ik and γ(Y )
ik are the strengths of the mutualistic interactions, which depend on
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the degree of the node as
γij = aij

γ

(ki)ρ
, (3)

where γ is the normalized strength and aij’s are the elements of the network adjacency matrix:
aij = 1 if there is an interaction between pollinator i and plant j; otherwise aij = 0. The parameter
ki is the number of mutualistic links associated with species i, and ρ determines the strength of the
trade off between the interaction strength and the number of interactions. If there is no trade-off
(i.e., ρ = 0), the network topology has no effect on the strength of the mutualistic interactions. In
contrast, a full trade off (ρ = 1) means that the interaction strength is weighed by the nodal degree
so the network topology affects the species gain from the interactions. To make a numerical study
of the collapse and recovery processes in the presence of different types of stochastic processes
feasible, we choose κ(X)

i ≡ κ, the pollinator decay rate, as the bifurcation parameter while fixing
the values of the other parameters as reported in the literature 39–43.

We consider three cases of stochastic influences: environmental noise (EN) only, demo-
graphic noise (DN) only, and simultaneous presence of both types of noise (EDN). The process
dBi(t) in Eqs. (1) and (2) is a Brownian motion obeying the normal distribution with zero mean
and variance dt. For EN, the noise strength terms are constants:

V (Xi) = σ2 and U(Yi) = σ2, (4)

with σ being the noise amplitude. DN is modeled as 21, 35, 60

V (Xi) = ζ2Xi and U(Yi) = ζ2Yi (5)

with noise amplitude ζ . For EDN, we have

V (Xi) = σ2 + ζ2Xi and U(Yi) = σ2 + ζ2Yi. (6)

We simulate the stochastic dynamics of four empirical pollinator-plant mutualistic networks
[Available from the Web of Life database (http://www.web-of-life.es)]. Network A is from Hick-
ing, Norfolk, United Kingdom (SX = 61 and SY = 17 with the number of mutualistic links
L = 146), where SX and SY are the numbers of pollinator and plant species, respectively. Net-
work B is from Tenerife, Canary Islands (SX = 38, SY = 11, and L = 106). Network C is
from North Carolina, USA (SX = 44, SY = 13, and L = 143). Network D is from Hestehaven,
Denmark (SX = 42, SY = 8 and L = 79). A graphic representation of the adjacency matrices for
the four networks provides a better visualisation of the structure of the mutualistic interactions 43,
including nestedness that is often associated with the intrinsic ability of pollinators to overcome
harsh conditions.
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For Review OnlyFigure 1: Noise induced collapse through a tipping point transition. (a-d) Species abundances
versus the normalized decay rate κ for networks A in the absence of noise, with EN, DN and
EDN, respectively. The red and blue curves represent the pollinator and plant abundances. The
collapse tipping points for the four cases in (a-d) are approximately κc ≈ 1.8, 1.7, 1.4, and 1.4,
respectively. Other parameter values are α(X)

i = α
(Y )
i = 0.3, β(X)

ii = β
(Y )
ii = 1, γ = 1, h = 0.2,

ρ = 0.5, µX = 10−4, and µY = 10−4. In (b,d), the environmental noise amplitude is σ = 0.1. In
(c,d), the demographic noise amplitude is ζ = 0.25. The time duration of each simulation run is
T = 400, which is long enough to allow the species abundances to switch to the lower stable state
after a transient. The initial conditions are randomly chosen from the basin of the high-abundance
steady state.

Numerical results

Noise-induced collapse and recovery processes. An increase in the pollinator decay rate κ, the
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bifurcation parameter, can be viewed as a consequence of the deterioration of the environment.
Due to the mutualistic interactions, plants are affected by the decay of pollinators, albeit indirectly.
We present the simulation results from network A here, while leaving those with networks B-D
in Supplementary Information (SI). For EN, the stochastic system is integrated using a standard
second-order method 61. When DN is present, we use a previously developed integration method
for multiplicative noises 60, 62.

A tipping point transition of the collapse type occurs when the system switches from a high
to a low-abundance steady state as κ increases through a critical point, and noise can affect this
transition by advancing its occurrence. Figure 1(a) shows such a transition in the absence of noise,
where the transition point is κc ≈ 1.8. For κ < κc, the system is in the high-abundance steady
state. For κ > κc, the system approaches asymptotically an extinction state in which most species
abundances are near zero. Similar transitions occur when noise is present, as shown in Figs. 1(b-d)
for EN, DN, and EDN, respectively. The value of the critical transition point for the EN case is
κc ≈ 1.7, while that for the DN or EDN case is κc ≈ 1.4, indicating that environmental noise has
caused the transition to occur at a slightly smaller value of the bifurcation parameter as compared
with the deterministic case, but demographic noise has a more devastating effect, as it causes the
transition to occur at a markedly smaller value of κ. Qualitatively, this can be understood by noting
that when the system is in the high abundance state, the corresponding stochastic perturbation is
stronger due to the dependence of the noise term on the abundance.

When the system is in an extinction state where the species abundance is near zero, noise
can induce an “early” recovery of the species, a phenomenon that was reported recently 29 but
mainly for the case of EN. Dynamically, this occurs when noise induces a state transition of the
system from a low to a high abundance state - a process that is opposite to noise-induced collapse.
Representative results are shown in Fig. 2, where the panels (a-d) correspond to the deterministic
case and the three cases with EN, DN, and EDN, respectively. In terms of the bifurcation parameter,
the recovery point for cases (a) and (c) is κc ≈ 1.2 while that for cases (b,d) is κc ≈ 1.5. Since
case (c) involves DN only and cases (b,d) have EN, we see that DN has little effect on the recovery
point. This is reasonable because, prior to the recovery, the system is in the low steady state with
near zero abundance, so the stochastic perturbation due to DN is insignificant. The results in Fig. 2
indicate that EN can be beneficial to species recovery, as it prompts the transition to occur “earlier”
as the bifurcation parameter decreases from a value in the extinction regime 29.

Comparing the results in Figs. 1 and 2, we see that the value of the species recovery point is
generally smaller than that for the collapse tipping point. This indicates that, once the system is
in extinction, the environment needs to be more suited for the species than that at the collapse for
recovery to occur 44.
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Figure 2: Noise induced recovery process. (a-d) Species abundances versus the bifurcation pa-
rameter as its value continuously decreases from that in the extinction state for the four cases of
absence of noise, EN, DN and EDN, respectively. The red and blue curves represent the pollinator
and plant abundances, respectively. The recovery points for the four cases are approximately 1.2,
1.5, 1.2, and 1.5, respectively. Other parameter values are α(X)

i = α
(Y )
i = 0.3, β(X)

ii = β
(Y )
ii = 1,

γ = 1, h = 0.2, ρ = 0.5, µX = 10−4, and µY = 10−4. In (b,d), the environmental noise amplitude
is σ = 0.1. In (c,d), the demographic noise amplitude is ζ = 0.025. The time duration of each
simulation run is T = 400, which is sufficient for the transition from a low to a high abundance
state to complete. The initial conditions are randomly chosen from the basin of the low abundance
steady state.

Noise induced transients and scaling. The phenomena of noise-induced collapse and recov-
ery both involve the transition from one steady state to another, which takes time to complete,
leading to a transient behavior. The average transient time τ depends on the type of noise and its
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amplitude.

To make it feasible to numerically calculate and mathematically derive the noise scaling law
of the average transient time, we exploit the effective 2D reduced model that has been demon-
strated 43 to generate the dynamical behaviors associated with the tipping point transition in the
full mutualistic networked system. The 2D model not only captures the essential behaviour of
empirical mutualistic networks from different regions and climate across the Earth, but it also pre-
dicts correctly the onset of the tipping point in all 59 available network data from pollinator-plant
habitats, even in presence of noise. Being much less complicated than the full network model, the
reduced system can be used as a paradigm to gain insights into mutualism.

Figure 3: Algebraic scaling between the average transient time τ and the environmental noise
amplitude σ. (a,b) Dependence of τ on σ on a logarithmic scale for the collapse and recovery
processes, respectively. The values of κ are 1.65 for the collapse process and 1.5 for the recovery
process. Other parameter values are α = 0.3, β = 1, h = 0.2, γ = 1, and ρ = 0.5. For each
value of σ, simulations are carried out for a long time interval (T = 1000), which guarantees that
the system has approached the desired stable steady state by then. For each σ value, 100 random
initial conditions are chosen from the basin of the stable steady state that the systems leaves.

Under noise, the 2D model is written as

dx

dt
= αx− κx− βx2 + 〈γx〉y

1 + h〈γx〉y
x+ µ+

√
v(x)dBt, (7)

dy

dt
= αy − βy2 + 〈γy〉x

1 + h〈γy〉x
y + µ+

√
u(x)dBt, (8)
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Figure 4: Algebraic scaling between the average transient time τ and the demographic noise ampli-
tude ζ . (a,b) Dependence of τ on ζ on a logarithmic scale for the collapse and recovery processes,
respectively. The values of κ are 1.0 for the collapse process and 1.5 for the recovery process.
Other parameter values are α = 0.3, β = 1, h = 0.2, γ = 1, and ρ = 0.5. The simulation setting
is the same as that in Fig. 3.

where x and y are the effective or average abundances of pollinators and plants, respectively, α is
the effective growth rate in the reduced model, β stands for the combined effects of intraspecific
and interspecific competitions, κ is the bifurcation parameter that accounts for the decay rate of
the pollinator, and µ represents the migration effect of the species. The two effective mutualistic
interaction parameters, 〈γx〉 and 〈γy〉, are obtained 43 through properly weighed averages of the
quantities γ(X)

ik and γ(Y )
ik based on the empirical complex networks, Eqs. (1) and (2). The terms

in Eqs. (7) and (8) that involve the Brownian motion dynamics dB(t) represent the stochastic
perturbations. For EN, we have v(x) = σ2 and u(y) = σ2. For DN, we have v(x) = ζ2x and
u(y) = ζ2y. For EDN, we have v(x) = σ2 + ζ2x and u(y) = σ2 + ζ2y.

Suppose the system is in the high abundance state, i.e., the value of κ is smaller than that
associated with the deterministic tipping point of collapse. The presence of noise can induce a
transition to the low abundance state. Figure 3(a) shows, for EN, the average transient time τ
required for the collapse transition to complete versus the noise amplitude σ on a logarithmic
scale. As σ increases, τ decreases, and the scaling relation is algebraic:

τ ∼ σ−p, (9)

with the scaling exponent p ≈ 2.45. Likewise, when the system is in the low abundance state, noise
can induce a transition to the high abundance state and the scaling of the average transient time

10
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with the noise amplitude is also algebraic, as exemplified in Fig. 3(b), where p ≈ 2.40. Similar
algebraic scaling relations have been obtained with DN:

τ ∼ ζ−q, (10)

as shown in Figs. 4(a) and 4(b) for the processes of noise induced collapse and recovery, respec-
tively.

Figure 5: Loss of mutualism in the forward (collapse) direction. Shown are the steady state species
abundances of network A versus the bifurcation parameter κ as it increases from zero for six values
of ζ , the amplitude of DN. Mutualism is lost for ζ > ζc, where 4.5 < ζc < 5.0. The network
parameter values are α(X)

i = α
(Y )
i = 0.3, β(X)

ii = β
(Y )
ii = 1, γ = 1, h = 0.2, ρ = 0.5, µX = 10−4,

and µY = 10−4. The initial conditions are randomly chosen from the basin of the high abundance
steady state.

Loss of mutualism induced by demographic noise. Stochastic processes of the DN type, if
its amplitude is sufficiently large, can have a devastating effect on the system: loss of mutualism.
Dynamically, this occurs when the basins of the high and low abundance steady states overlap so
significantly that these states can no longer be distinguished from each other. A consequence is
that the movements of the individual species populations are effectively independent stochastic
processes, as the mutualistic interactions are completely overwhelmed by the noise. An example
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is shown in Fig. 5, where the variations in the species abundances as the bifurcation parameter κ
increases are displayed for six values of ζ , the amplitude of DN. It can be seen that, for ζ < ζc,
where ζc / 5.0, there is still mutualism but it is completely lost for ζ > ζc. This phenomenon of
loss of mutualism also occurs during the species recovery process, i.e., as κ decreases continuously
from a relatively high value for which the deterministic system is in the low abundance steady state,
as shown in Fig. 6 for six values of ζ . The critical value ζc obtained from the recovery (“backward”)
process is approximately the same as that from the collapse (“forward”) process in Fig. 5.

Large environmental noise, analogous to demographic noise, can cause the survival and ex-
tinction basins of attraction to overlap, resulting in the loss of mutualism. The mathematical reason
is that the environmental and demographic noise amplitudes enter the system equations on an equal
footing. Extraordinarily strong environmental noise in which the stochastic terms are much larger
than the others, including the mutualistic interaction terms, may be unrealistic. The situation with
demographic noise is somewhat different because its amplitude is inversely proportional to the
habitat size, so effectively large fluctuations can arise in small habitats, implying that such a sys-
tem is more vulnerable to collapse. By the same token, from the point of view of recovery, small
population clusters corresponding to larger noise strength are advantageous for the population to
cross over the unstable equilibrium to recover.

Physical theory for the scaling law of average transient time

We develop a physical theory to understand the algebraic scaling law of the average transient time
for the phenomena of noise-induced collapse and recovery. We base our analysis of the stochastic
tipping point dynamics on the effective 2D reduced model 43 for mutualistic networks. Figure 7
schematically illustrates the deterministic as well as the noise-induced collapse and recovery pro-
cesses. In the deterministic case, these processes are the result of saddle-node bifurcations, where
the collapse tipping point is due to a reverse saddle-node bifurcation and recovery is the result of a
forward saddle-node bifurcation. For κ to the left of the forward saddle-node bifurcation point, the
system possesses only one stable equilibrium corresponding to the high abundance steady state.
For κ to the right of the reverse saddle node bifurcation point, there is only the low abundance
equilibrium, corresponding to extinction. However, for κ in-between the two saddle-node bifur-
cation points, the system exhibits multistability 63–66 with three equilibria: two stable equilibria
and one unstable equilibrium between them. The two stable equilibria are two attractors with their
own basins of attraction, while the stable manifold of the unstable equilibrium is the basin bound-
ary 3, 67. Under the influence of noise, the dynamical trajectory of the system can cross the basin
boundary 64, 68, 69. In particular, as the value of κ increases, the system can have a transition from the
high- to the low-abundance equilibrium at κc, as indicated by the green arrow in Fig. 7. This is the
phenomenon of noise-induced collapse. Conversely, when the system is already in the extinction
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Figure 6: Loss of mutualism in the backward (recovery) direction for network A. Shown are, for
six values of ζ , the steady state species abundances versus κ as it decreases from high value for
which the deterministic network system is in the extinction state. The value of the critical noise
noise amplitude ζc is approximately the same as that obtained from the forward process in Fig. 5.
The initial conditions are chosen randomly from the basin of the low abundance steady state. Other
parameter values are the same as those in Fig. 5.

state, noise can trigger a transition from the low- to the high-abundance state at κr, as illustrated
by the orange arrow in Fig. 7. This is the phenomenon of noise-induced species recovery.

For both the noise-induced collapse and recovery phenomena, the dynamical mechanism is a
noise-induced transition between two stable equilibria (attractors). There is a competition between
the attractiveness of the dynamics in the neighbourhood of the stable equilibria, which is controlled
by the negative eigenvalues of the Jacobian matrix, and the stochastic random jumps that take the
trajectory out of the open neighbourhood possibly into the other attractor 64, 68, 70, 71. To enable a
transition, the noisy “kicking” must be sufficiently large to bring the system trajectory across the
unstable equilibrium. Our analysis of the 2D model reveals that, for the collapse process, the Eu-
clidean distance between the upper stable equilibrium and the unstable equilibrium varies in the
interval (2.7, 3.4) for κ ∈ [1.0, 2.0]. For the recovery process, the Euclidean distance between the
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Figure 7: A schematic illustration of the dynamical mechanisms of the noise induced collapse
and recovery processes. The species abundance is plotted versus the environmental deterioration
parameter κ (the bifurcation parameter). The deterministic tipping point corresponds to the birth of
a reverse saddle-node bifurcation, while the recovery process in the backward direction is the result
of a forward saddle-node bifurcation. When the system is initially in the high abundance state,
noise-induced collapse occurs at κc, before the system reaches the reverse saddle-node bifurcation
point. When the system is in the low abundance state, noise induced recovery can occur at κr as κ
decreases, before the systems reaches the forward saddle-node bifurcation point.

lower stable equilibrium and the unstable equilibrium is in (0.5, 1.0) for κ ∈ [1.0, 2.0]. The sizable
difference in the distance range implies that, for the same noise, recovery can occur more readily,
where a noise of relatively small amplitude is able to drive the system to overcome the distance to
the basin boundary, allowing the trajectory to enter the basin of the upper equilibrium. For an en-
semble of trajectories, the transient time required for the transition is exponentially distributed 65, 72

with the mean transient lifetime τ that depends on the noise amplitude.

In terms of the underlying stochastic process, the average transient time τ is nothing but
the first passage time 73 for the transition, which decreases with the noise amplitude. To derive
the algebraic scaling relations (9) and (10), we note that, for population stochastic processes, the
equilibrium distribution is typically stationary 74, 75. We thus assume that the distributions of the
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pollinators and plants have the following respective stationary probability density functions 76, 77:

p(x) =
C

v(x)
e2

∫ d(x)
v(x)

dx, (11)

p(y) =
C

u(y)
e2

∫ d(y)
(y)

dy, (12)

where C is a normalization constant. The integral in the exponent is an antiderivative, and the
constants produced by the integration are grouped into C. The functions

d(x) = αx− βx2 − κx+ 〈γx〉y
1 + h〈γx〉y

x+ µ

d(y) = αy − βy2 + 〈γy〉x
1 + h〈γy〉x

y + µ

are from Eqs. (7) and (8), respectively, of the 2D model. In principle, for a population that goes
extinct, we should consider a quasi-stationary distribution characterised by a transient, typically
fluctuating about a stable equilibrium before becoming extinct 78. In this case, we would deal
with a truncated portion of a stationary distribution, which would be appropriate for our problem.
However, since our goal is to obtain the scaling dependence of the first passage time on the noise
amplitude, we exploit stationary distributions for both the pollinator and plant species.

We first treat demographic noise. Substituting v(x) = ζ2x2, u(y) = ζ2y2, d(x), and d(y)
into Eqs. (11) and (12) yields,

p(x) =
C

ζ2x2
e

2
ζ2

∫
[(α−κ+ 〈γx〉y

1+h〈γx〉y
) 1
x
−β+ µ

x2
]dx

=
C

ζ2x2
e

2
ζ2
φ(x)

, (13)

p(y) =
C

ζ2y2
e

2
ζ2

∫
[(α+

〈γy〉x
1+h〈γy〉x

) 1
y
−β+ µ

y2
]dy

=
C

ζ2y2
e

2
ζ2
φ(y)

, (14)

where

φ(x) = −µ
x
− βx+

(
α− κ+

〈γx〉y
1 + h〈γx〉y

)
ln (x), (15)

φ(y) = −µ
y
− βy +

(
α +

〈γy〉x
1 + h〈γy〉x

)
ln (y). (16)

For an ergodic variable x with a stationary distribution, the mean first passage time is given by 76

τx = 2

∫ n

x

∫ n
0
p(x)dx

v(x)p(x)
dx, (17)

where x < n and n is the final abundance. The mean first passage time τ for the pollinator species
is

τ = 2

∫ xf

x0

∫ xf
0
p(x)dx

ζ2Cx2p(x)
dx, (18)

15

Page 16 of 25

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

where the area under p(x) between x0 and xf gives the fraction of time that the process x spends
in the interval (x0, xf ), x0 is the initial value and xf is the final value. Substituting Eq. (13) into
Eq. (18), we get

τ = 2

∫ xf

x0

2C
ζ2
(− e

2φ(x)

ζ2

x
+ 2φ(x)Ei(x)

ζ2
)

e
2
ζ2
φ(x)

dx, (19)

where Ei(x) ≡ −
∫∞
−x(e

−t/t)dt is the error function. Carrying out the integration, we get

τ =
1

ζ2
(
2C

xf
− 2C

x0
) +

1

ζ4
2C

[
e
−2φ(xf )

ζ2 Ei(xf )− e
−2φ(x0)

ζ2 Ei(x0)

]
. (20)

Equation (20) gives dependence of τ on the noise amplitude ζ . While the dependence appears
complicated, numerical test of Eq. (20) in Fig. 8(b) reveals the scaling relation (10).

Figure 8: Numerical test of Eq. (20) and Eq. (26). (a,b) are the numerical simulation of the formulas
of scaling law for environmental noise and demographic noise, respectively. The constant C is set
as 1.

We next consider environmental noise. With v(x) = σ2 and v(y) = σ2, we can rewrite the
probability density function as

p(x) =
C

σ2
e

2
σ2

∫
[(αx−βx2−κx+ 〈γx〉y

1+h〈γx〉y
)x+µ]dx =

C

σ2
e

2
σ2
φ(x), (21)

p(y) =
C

σ2
e

2
σ2

∫
[(αy−βy2+ 〈γy〉x

1+h〈γy〉x
)y+µ]dy

=
C

σ2
e

2
σ2
φ(y), (22)
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where

φ(x) = µx− βx3

3
+
x2

2
(α− κ+

〈γx〉y
1 + h〈γx〉y

), (23)

φ(y) = µy − βy3

3
+
y2

2
(α +

〈γy〉x
1 + h〈γy〉x

). (24)

For initial condition x0 and final state xf , the mean first passage time τ for pollinators is

τ = 2

∫ xf

x0

∫ xf
0
p(x)dx

σ2p(x)
dx. (25)

Substituting Eq. (21) into Eq. (25), we get

τ = 2

∫ xf

x0

2C
σ2 (−e

2φ(x)

σ2 + 2φ(x)Ei(x)
σ2 )

e
2
σ2
φ(x)

dx = 2

∫ xf

x0

2C

σ2
(
2φ(x)Ei(x)

σ2e
2
σ2
φ(x)

− 1)dx

=
4C

σ2

e 2φ(xf )

σ2
Ei(xf )

2φ(xf )2
− e

2φ(x0)

σ2
Ei(x0)

2φ(x0)2

 , (26)

where Ei(x) = −
∫∞
−x

e−t

t
dt is the error function. Numerical test of Eq. (26) shown in Fig. 8(a)

attests to the scaling law (9).

A remark about the generality of the scaling laws is in order. Our calculation of the equilibria
and derivation of the scaling laws of noise induced transients rely on the reduced 2D model that is
mathematically amenable to analysis. The 2D model was developed based on data from 59 empiri-
cal real world networks and was shown to capture the essential behaviour of the real networks from
a wide geographical range across continents and climate zones 43. The 2D model can accurately
predict the occurrence of the tipping point, even in presence of stochastic disturbances. These
features of the 2D model suggest that it can serve as a general paradigm to study the dynamics of
complex stochastic mutualistic networks and, consequently, the scaling results obtained here are
expected to be general as well.

Discussion

Transients, stochasticity, and high dimensionality represent the three main obstacles to long term
forecasting of ecological systems. To understand the interplay among the three is thus of paramount
importance and broad interest. In this paper, we take a step forward to addressing this challeng-
ing issue by investigating the transient dynamics associated with species collapse and recovery
in a generic class of mutualistic networked systems subject to stochastic influences. Such a net-
worked system is high-dimensional 29, 36–45, whose dynamics are described by the interactions of
two groups of species, e.g., pollinators and plants, in a mutualistic manner.
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How do transients manifest themselves in a mutualistic networked system? According to the
current understanding, the deterministic dynamical picture of a mutualistic network is dominated
by a tipping point transition 44. In particular, as a parameter characterizing the ecological condi-
tions varies in the direction of environmental deterioration, at a critical point (tipping point), the
populations of all species can collapse. As the environment is gradually improved so as to cause
the parameter to vary in the opposite direction, at another critical point the species populations
begin to recover. The values of the two critical points typically differ, leading to a hysteresis loop
with the implication that the environment needs to be significantly more improved for the recov-
ery to take place 44. In the presence of stochasticity, this deterministic picture is replaced by the
phenomena of noise-induced collapse and recovery. For example, at a parameter value prior to the
deterministic tipping point where the system would be in a survival state with healthy populations,
noise can induce a collapse. Likewise, in the parameter regime where the deterministic system is
in an extinction state, noise can induce recovery of the species populations. For both noise induced
phenomena, the basic dynamical mechanism is a transition between two stable steady states: one
corresponding to survival and another to extinction, and it takes time for the transition to complete.
This naturally brings transients into the picture and provides a paradigmatic setting for gaining
insights into the complex interplay of transients, stochasticity, and high dimensionality.

Our approach is to utilize the full high-dimensional networked system to demonstrate the
phenomena of noise-induced collapse and recovery. Simulations reveal the ubiquity of transient be-
haviors for both environmental (Gaussian white) noise and demographic (state-dependent, colored)
noise. However, to obtain a quantitative understanding of the transients, the full high-dimensional
system becomes infeasible both computationally and theoretically. We thus take advantage of the
2D reduced model that was previously demonstrated to be effective at capturing the essential tip-
ping point dynamics 43 to numerically obtain the scaling laws quantifying the two noise-induced
phenomena. The 2D model also enables a theoretical analysis of the underlying transient behav-
iors in terms of the mean first passage time. In particular, the tipping point transition between the
steady states created by saddle-node bifurcations, where the low- and high-abundance steady states
correspond to extinction and survival, respectively, and the unstable state determines the boundary
that separates the basins of the two steady states. Depending on the initial and final states, the
transition can be a collapse process (a reverse saddle-node bifurcation) or a recovery process (a
forward saddle-node bifurcation). The phenomena of noise-induced collapse and recovery occur
in the parameter regime in between the two saddle-node bifurcations, which also depend on the
nature of the noise. Especially, the influence of environmental noise on the transition behaviors
is simply of the additive nature, but the effect of demographic noise depends on the species abun-
dance. If the initial state of the system is in the high-abundance steady state, demographic noise
is strong, making it the dominant stochastic source to induce a system collapse. In contrast, the
strength of the demographic noise becomes small when the initial state is in the basin of low-
abundance steady state, so it has little effect on the dynamics, leaving room for the environmental
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noise to play a dominant role in affecting the recovery dynamics. For both types of noise, the
associated average transient time is found to scale with the amplitude algebraically, which is es-
tablished numerically with support from a physical theory based on the mean first passage time of
the underlying stochastic dynamical system.

In nonlinear dynamical systems in general, transients can have a deterministic origin or they
can be induced by noise. In the high-dimensional ecological networks studied in this paper, both
types of transients can occur. In particular, if the bifurcation parameter κ is below the tipping point,
the noiseless deterministic dynamics are governed by stable survival and extinction states. For a
fixed value of κ (and other system parameters too) in this regime, neither a collapse from the sur-
vival state nor a recovery from the extinction state can occur. The two transitions are possible only
if either or both environmental and demographic noises are present. Dynamically, we have then,
what we call, noise-induced transients, whose duration is exponentially distributed and the average
transient time follows an algebraic scaling with the noise amplitude. However, if κ is beyond the
deterministic tipping point, transient dynamics can occur before the system finally collapses into
the extinction state. A tipping point transition or a regime shift can occur after a period of relative
stasis without noise, even in the absence of further deterioration of the environment. The timing
of the eventual collapse is difficult to be predicted because of the random nature of the transient
time. Taken together, in the pre-tipping point regime, transients are induced by noise but, in the
post-tipping point regime, deterministic transients arise.

In the present work, we have used mutualistic networks as a gateway to study high-dimensional
ecological networks. Because of the mutualistic interactions, when a group of pollinators or plants
becomes extinct, the abundances of other species that are in mutualistic relationship with the ex-
tinct species are also greatly affected. Under external driving such as improved environmental
conditions and incubation of pollinators, the extinct species may gradually recover their abun-
dances and the corresponding species with the mutualistic relationship are also recovered. This
kind of dynamics is at the core of our work, and its general principles, ideas and methods can be
extended to complex networks in other disciplines to address critical issues such as resilience and
sustainability.

Our results suggest possible management strategies for high-dimensional ecological systems
under stochastic influences. For example, in view of the detrimental effect of demographic noise
in causing an ecosystem to collapse, as analyzed in this paper, it is of critical importance to devise
methods to reduce the level of demographic noise to keep the system in the survival state. In
contrary, when the system is already in extinction, a suitable amount of environmental noise may
facilitate recovery 29. The algebraic scaling law of the average transient lifetime uncovered here
stipulates that the recovery process can be expedited with stronger noise.

19

Page 20 of 25

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

There has been large-scale extinction of many species of pollinators, such as wild bees, while
other species are in trouble as well. The collapse of pollinators has unimaginable consequences
for biodiversity and food production. Their protection is vital for our survivability. The pollinator
ecosystems are affected by a host of perturbations, such as climate change caused by global warm-
ing, the excessive use of pesticides, diseases and bacterial infections, and loss of habitats due to
pollution, fragmentation and destruction. A reliable understanding of the tipping point dynamics
in ecological networks has profound implications to address critical issues, such as resilience and
sustainability, for nature conservation and ecosystem management.
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