25 research outputs found

    Detection of genetically modified organisms (GMOs) using molecular techniques in food and feed samples from Malaysia and Vietnam

    Get PDF
    Food labeling in accordance with Novel Food Regulation has been enforced in the European Community since 1997 with a series of updated legislations namely, EC/258/97, EC/1139/98, EC/49/2000, EC/50/2000 and EC/1829/2003. Guidelines and labeling regulations for the use of GMOs materials in food and feed products has also been introduced in Malaysia and Vietnam. Therefore, the demand for the establishment and development of a robust and rapid operation procedure for GMO detection has increased recently in both countries. The procedure of GMO detection emphasizes not only on detection tests but also on confirmation assays. This study employed PCR technology for detection and direct DNA sequencing for confirmation procedures respectively. The results demonstrated for the first time the presence of GM plants with glyphosate-resistant trait led by the control of P35S promoter and NOS terminator in either Malaysian or Vietnamese feed with high frequency (20 positive samples out of 24 analyzed samples). The P35S promoter, EPSPS gene and NOS terminator sequences obtained showed some mutations on single-stranded and double-stranded targeted sequences caused by single nucleotide insertion or single nucleotide changes. These results reinforce the need for development of detection procedures to comply with food/feed labeling system

    Comparison of DNA extraction efficiencies using various methods for the detection of genetically modified organisms (GMOs)

    Get PDF
    The ability to detect the presence of transgenes in crop-derived foods depends on the quantity and quality of DNA obtained from a product to be analyzed. The efficiency of DNA extraction protocols differs due to the nature of each food product. In this paper, we described two main DNA extraction protocols and their modifications that have been applied and evaluated for DNA extraction from raw and processed food as well as animal feed. The yield and quality for five categories of food and feed samples namely, raw soybean, raw maize, animal feed, smooth tofu and soymilk are discussed. The statistical interaction analyses showed that the cetyltrimethyl ammonium bromide (CTAB) method was proven to be the best method to extract DNA from raw soybean, maize and animal feed samples which not only obtained high DNA yield of 32.7, 28.4 and 33.4 ng DNA/mg sample respectively, but also produced high quality DNA with the absorbance A260/A280 ratio of 1.9, 1.9 and 2.0, respectively. These DNA were suitable for PCR amplification which produced a 164 bp DNA fragment of the lectin gene from soybean, and a 277 bp DNA fragment of the zein gene from maize. In the processed food category, the Wizard isolation method was found to be the best for the extraction of DNA from smooth tofu and soymilk with the yield of 13.2 and 3.4 ng DNA/mg sample, and the quality of the DNA at the absorbance A260/A280 ratio ranged from 1.9 to 1.7. These DNA were successfully amplified using primers specific to the lectin gene of soybean

    A Novel Thermostable Cytochrome P450 from Sequence-Based Metagenomics of Binh Chau Hot Spring as a Promising Catalyst for Testosterone Conversion

    Get PDF
    Biotechnological applications of cytochromes P450 show difficulties, such as low activity, thermal and/or solvent instability, narrow substrate specificity and redox partner dependence. In an attempt to overcome these limitations, an exploitation of novel thermophilic P450 enzymes from nature via uncultured approaches is desirable due to their great advantages that can resolve nearly all mentioned impediments. From the metagenomics library of the Binh Chau hot spring, an open reading frame (ORF) encoding a thermostable cytochrome P450—designated as P450-T3—which shared 66.6% amino acid sequence identity with CYP109C2 of Sorangium cellulosum So ce56 was selected for further identification and characterization. The ORF was synthesized artificially and heterologously expressed in Escherichia coli C43(DE3) using the pET17b system. The purified enzyme had a molecular weight of approximately 43 kDa. The melting temperature of the purified enzyme was 76.2 ◩C and its apparent half-life at 60 ◩C was 38.7 min. Redox partner screening revealed that P450-T3 was reduced well by the mammalian AdR-Adx4-108 and the yeast Arh1-Etp1 redox partners. Lauric acid, palmitic acid, embelin, retinoic acid (all-trans) and retinoic acid (13-cis) demonstrated binding to P450-T3. Interestingly, P450-T3 also bound and converted testosterone. Overall, P450-T3 might become a good candidate for biocatalytic applications on a larger scale

    Epigenetic modulators as therapeutic targets in prostate cancer

    Get PDF
    Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.info:eu-repo/semantics/publishedVersio

    Development of Antimicrobial Paper Coatings Containing Bacteriophages and Silver Nanoparticles for Control of Foodborne Pathogens

    No full text
    In this study, a novel antimicrobial formula that incorporates Listeria bacteriophage P100 and silver nanoparticles into an alginate matrix was successfully developed. Paper coated with the antimicrobial formula inhibited the growth of Listeria monocytogenes. The effects of alginate concentration on the formation of silver nanoparticles, silver concentration on the infectivity of phages, and of low alginate concentrations on the sustained release of silver and phages were explored. The highest antimicrobial activity of the alginate–silver coating was achieved with an alginate concentration of 1%. Adding phage P100 (109 PFU/mL) into the alginate–silver coating led to a synergic effect that resulted in a 5-log reduction in L. monocytogenes. A bioactive paper was then developed by coating a base paper with the antimicrobial formula at different coating weights, followed by infrared drying. The higher coating weight was a crucial factor for the maintenance of phage infectivity throughout the coating and drying processes. Phages incorporated into the alginate matrix remained functional even after high-temperature infrared drying. Taken together, an optimized coating matrix is critical in improving the antimicrobial performance of bioactive paper as well as maintaining phage infectivity during the paper manufacturing process

    Design, synthesis, and evaluation of novel N'-substituted-1-(4-chlorobenzyl)-1H-indol-3-carbohydrazides as antitumor agents

    No full text
    In continuity of our search for novel anticancer agents acting as procaspase activators, we have designed and synthesised two series of (E)-Nâ€Č-benzylidene-carbohydrazides (4a–m) and (Z)-N'-(2-oxoindolin-3-ylidene)carbohydrazides (5a–g) incorporating 1-(4-chlorobenzyl)-1H-indole core. Bioevaluation showed that the compounds, especially compounds in series 4a–m, exhibited potent cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer). Within series 4a–m, compounds with 2-OH substituent (4g–i) exhibited very strong cytotoxicity in three human cancer cell lines assayed with IC50 values in the range of 0.56–0.83 ”M. In particular, two compounds 4d and 4f bearing 4-Cl and 4-NO2 substituents, respectively, were the most potent in term of cytotoxicity with IC50 values of 0.011–0.001 ”M. In caspase activation assay, compounds 4b and 4f were found to activate caspase activity by 314.3 and 270.7% relative to PAC-1. This investigation has demonstrated the potential of these simple acetohydrazides, especially compounds 4b, 4d, and 4f, as anticancer agents

    Assembled Porphyrin Nanofiber on the Surface of g-C<sub>3</sub>N<sub>4</sub> Nanomaterials for Enhanced Photocatalytic Degradation of Organic Dyes

    No full text
    In this work, a g-C3N4/porphyrin nanocomposite was fabricated through the self-assembling of monomeric Tetrakis (4-carboxyphenyl) porphyrin (TCPP) molecules with g-C3N4 nanomaterials. The characterizing results showed a good distribution of TCPP nanofibers with a diameter of 3N4 nanoflakes’ surfaces. The prepared g-C3N4/porphyrin nanocomposite had two bandgap energies of 2.38 and 2.7 eV, which could harvest a wide range of photon energy in the light spectrum, particularly in visible light. The obtained C3N4/TCPP nanocomposite revealed a remarkable photodegradation efficiency toward rhodamine B dyes, with a RhB removing rate of 3.3 × 10−2 min−1. The plausible mechanism for the photocatalytic performance of the g-C3N4/porphyrin photocatalyst for the RhB dye’s degradation was also studied and discussed

    Assembled Porphyrin Nanofiber on the Surface of g-C3N4 Nanomaterials for Enhanced Photocatalytic Degradation of Organic Dyes

    No full text
    In this work, a g-C3N4/porphyrin nanocomposite was fabricated through the self-assembling of monomeric Tetrakis (4-carboxyphenyl) porphyrin (TCPP) molecules with g-C3N4 nanomaterials. The characterizing results showed a good distribution of TCPP nanofibers with a diameter of &lt; 100 nm and several micrometers in length on the g-C3N4 nanoflakes&rsquo; surfaces. The prepared g-C3N4/porphyrin nanocomposite had two bandgap energies of 2.38 and 2.7 eV, which could harvest a wide range of photon energy in the light spectrum, particularly in visible light. The obtained C3N4/TCPP nanocomposite revealed a remarkable photodegradation efficiency toward rhodamine B dyes, with a RhB removing rate of 3.3 &times; 10&minus;2 min&minus;1. The plausible mechanism for the photocatalytic performance of the g-C3N4/porphyrin photocatalyst for the RhB dye&rsquo;s degradation was also studied and discussed
    corecore