1,559 research outputs found

    Is Duhuo Jisheng Tang containing Xixin safe? A four-week safety study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though the nephrotoxicity and carcinogenicity of aristolochic acid (AA) are known, its safety in clinical usage is not clear. This study aims to evaluate the safety of <it>Duhuo Jisheng Tang </it>(DJT) in a four-week study to treat osteoarthritis (OA) of the knee.</p> <p>Methods</p> <p>A qualitative and quantitative investigations on DJT were conducted. A list of adverse events (AEs), complete blood counts, and liver and kidney function tests were measured for participants with knee OA at their scheduled hospital visits. Each detected AEs was independently assessed for severity and causality by site investigators (Chinese medical doctors) and study nurses.</p> <p>Results</p> <p>A total of 71 eligible subjects were included in the clinical study where 287 AEs were reported. DJT did not contain detectable aristolochic acid (AA) under thin-layer chromatography (TLC) analysis and gas chromatography coupled with mass spectrometry (GC-MS). There were no significant changes in liver or kidney functions.</p> <p>Conclusion</p> <p>In four-week use of DJT, no renal tubular damage, no severe incidences of AEs and adverse drug reactions (ADRs) were observed. The present study obtained safety data from active surveillance of DJT.</p

    Investigation of a Photoelectrochemical Passivated ZnO-Based Glucose Biosensor

    Get PDF
    A vapor cooling condensation system was used to deposit high quality intrinsic ZnO thin films and intrinsic ZnO nanorods as the sensing membrane of extended-gate field-effect-transistor (EGFET) glucose biosensors. The sensing sensitivity of the resulting glucose biosensors operated in the linear range was 13.4 μA mM−1 cm−2. To improve the sensing sensitivity of the ZnO-based glucose biosensors, the photoelectrochemical method was utilized to passivate the sidewall surfaces of the ZnO nanorods. The sensing sensitivity of the ZnO-based glucose biosensors with passivated ZnO nanorods was significantly improved to 20.33 μA mM−1 cm−2 under the same measurement conditions. The experimental results verified that the sensing sensitivity improvement was the result of the mitigation of the Fermi level pinning effect caused by the dangling bonds and the surface states induced on the sidewall surface of the ZnO nanorods

    Effect of membrane fusion protein AdeT1 on the antimicrobial resistance of Escherichia coli

    Get PDF
    Acinetobacter baumannii is a prevalent pathogen that can rapidly acquire resistance to antibiotics. Indeed, multidrug-resistant A. baumannii is a major cause of hospital-acquired infections and has been recognised by the World Health Organization as one of the most threatening bacteria to our society. Resistance-nodulation-division (RND) type multidrug efflux pumps have been demonstrated to convey antibiotic resistance to a wide range of pathogens and are the primary resistance mechanism employed by A. baumannii. A component of an RND pump in A. baumannii, AdeT1, was previously demonstrated to enhance the antimicrobial resistance of Escherichia coli. Here, we report the results of experiments which demonstrate that wild-type AdeT1 does not confer antimicrobial resistance in E. coli, highlighting the importance of verifying protein production when determining minimum inhibitory concentrations (MICs) especially by broth dilution. Nevertheless, using an agar-based MIC assay, we found that propionylation of Lys280 on AdeT1 renders E. coli cells more resistant to erythromycin

    Characterization and Regulation of the Osmolyte Betaine Synthesizing Enzymes GSMT and SDMT from Halophilic Methanogen Methanohalophilus portucalensis

    Get PDF
    The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize the osmolyte betaine de novo in response to extracellular salt stress. Betaine is generated by the stepwise methylation of glycine to form sarcosine, N, N-dimethylglycine and betaine by using S-adenosyl-L-methionine (AdoMet) as the methyl donor. The complete gene cluster of Mpgsmt-sdmt was cloned from Southern hybridization and heterologous expressed in E. coli respectively. The recombinant MpGSMT and MpSDMT both retained their in vivo functional activities in E. coli BL21(DE3)RIL to synthesize and accumulate betaine and conferred elevated survival ability in betaine transport deficient mutant E. coli MKH13 under high salt stress. The dramatic activating effects of sodium and potassium ions on the in vitro methyltransferase activities of MpGSMT, but not MpSDMT or bacterial GSMT and SDMT, revealed that GSMT from halophilic methanoarchaeon possesses novel regulate mechanism in betaine biosynthesis pathway. The circular dichroism spectra showed the fluctuated peaks at 206 nm were detected in the MpGSMT under various concentrations of potassium or sodium ions. This fluctuated difference may cause by a change in the β-turn structure located at the conserved glycine- and sarcosine-binding residue Arg167 of MpGSMT. The analytical ultracentrifugation analysis indicated that the monomer MpGSMT switched to dimeric form increased from 7.6% to 70% with KCl concentration increased from 0 to 2.0 M. The level of potassium and sodium ions may modulate the substrate binding activity of MpGSMT through the conformational change. Additionally, MpGSMT showed a strong end product, betaine, inhibitory effect and was more sensitive to the inhibitor AdoHcy. The above results indicated that the first enzymatic step involved in synthesizing the osmolyte betaine in halophilic archaea, namely, GSMT, may also play a major role in coupling the salt-in and compatible solute (osmolyte) osmoadaptative strategies in halophilic methanogens for adapting to high salt environments

    Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies

    Full text link
    We consider new physics explanations of the anomaly in the top quark forward-backward asymmetry measured at the Tevatron, in the context of flavor conserving models. The recently measured LHC dijet distributions strongly constrain many otherwise viable models. A new scalar particle in the antitriplet representation of flavor and color can fit the t tbar asymmetry and cross section data at the Tevatron and avoid both low- and high-energy bounds from flavor physics and the LHC. An s-channel resonance in uc to uc scattering at the LHC is predicted to be not far from the current sensitivity. This model also predicts rich top quark physics for the early LHC from decays of the new scalar particles. Single production gives t tbar j signatures with high transverse momentum jet, pair production leads to t tbar j j and 4 jet final states.Comment: 7 pages, 6 figures; v2: notation clarified, references adde

    An iron detection system determines bacterial swarming initiation and biofilm formation

    Get PDF
    Iron availability affects swarming and biofilm formation in various bacterial species. However, how bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery comprising a two-component system (TCS) and the TCS-regulated iron chelator 2-isocyano-6,7-dihydroxycoumarin (ICDH-Coumarin) that directly senses and modulates environmental ferric iron (Fe3+) availability to determine swarming initiation and biofilm formation. We demonstrate that the two-component system RssA-RssB (RssAB) directly senses environmental ferric iron (Fe3+) and transcriptionally modulates biosynthesis of flagella and the iron chelator ICDH-Coumarin whose production requires the pvc cluster. Addition of Fe3+, or loss of ICDH-Coumarin due to pvc deletion results in prolonged RssAB signaling activation, leading to delayed swarming initiation and increased biofilm formation. We further show that ICDH-Coumarin is able to chelate Fe3+ to switch off RssAB signaling, triggering swarming initiation and biofilm reduction. Our findings reveal a novel cellular system that senses iron levels to regulate bacterial surface lifestyle

    Activation of p53/miR-34a Tumor Suppressor Axis by Chinese Herbal Formula JP-1 in A549 Lung Adenocarcinoma Cells

    Get PDF
    Lung cancer is the leading cause of cancer death worldwide; the most common pathologic type is lung adenocarcinoma (LADC). In spite of the recent progress in targeted therapy, most LADC patients eventually expired due to the inevitable recurrence and drug resistance. New complementary agent with evidence-based molecular mechanism is urgently needed. MiR-34a is an important p53 downstream tumor suppressor, which regulates apoptosis, cell-cycle, EMT (epithelial mesenchymal transition), and so forth. Its expression is deficient in many types of cancers including LADC. Here, we show that a Chinese herbal formula JP-1 activates p53/miR-34a axis in A549 human LADC cells (p53 wild-type). Treatment with JP-1 induces p53 and its downstream p21 and BAX proteins as well as the miR-34a, resulting in growth inhibition, colony formation reduction, migration repression, and apoptosis induction. Accordingly, the decreases of miR-34a downstream targets such as CDK6, SIRT1, c-Myc, survivin, Snail, and AXL were observed. Moreover, JP-1 activates AMPKα and reduces mTOR activity, implying its inhibitory effect on the energy-sensitive protein synthesis and cell proliferation signaling. Our results show that JP-1 activates p53/miR-34a tumor suppressor axis and decreases proteins related to proliferation, apoptosis resistance, and metastasis, suggesting its potential as a complementary medicine for LADC treatment
    corecore