669 research outputs found

    A Low-Power Passive UHF Tag With High-Precision Temperature Sensor for Human Body Application

    Get PDF
    Radio frequency identification (RFID) tags are widely used in various electronic devices due to their low cost, simple structure, and convenient data reading. This topic aims to study the key technologies of ultra-high frequency (UHF) RFID tags and high-precision temperature sensors, and how to reduce the power consumption of the temperature sensor and the overall circuits while maintaining minimal loss of performance. Combined with the biomedicine, an innovative high-precision human UHF RFID chip for body temperature monitoring is designed. In this study, a ring oscillator whose output frequency is linearly related to temperature is designed and proposed as a temperature-sensing circuit by innovatively combining auxiliary calibration technology. Then, a binary counter is used to count the pulses, and the temperature is ultimately calculated. This topic designed a relaxation oscillator independent of voltage and current. The various types of resistors were used to offset the temperature deviation. A current mirror array calibration circuit is used to calibrate the process corner deviation of the clock circuit with a self-calibration algorithm. This study mainly contributes to reducing power consumption and improving accuracy. The total power consumption of the RF/analog front-end and temperature sensor is 7.65µW. The measurement error of the temperature sensor in the range of 0 to 60◦C is less than ±0.1%, and the accuracy of the output frequency of the clock circuit is ±2.5%

    Involvement of C4 Protein of Beet Severe Curly Top Virus (Family Geminiviridae) in Virus Movement

    Get PDF
    Background: Beet severe curly top virus (BSCTV) is a leafhopper transmitted geminivirus with a monopartite genome. C4 proteins encoded by geminivirus play an important role in virus/plant interaction. Methods and Findings: To understand the function of C4 encoded by BSCTV, two BSCTV mutants were constructed by introducing termination codons in ORF C4 without affecting the amino acids encoded by overlapping ORF Rep. BSCTV mutants containing disrupted ORF C4 retained the ability to replicate in Arabidopsis protoplasts and in the agro-inoculated leaf discs of N. benthamiana, suggesting C4 is not required for virus DNA replication. However, both mutants did not accumulate viral DNA in newly emerged leaves of inoculated N. benthamiana and Arabidopsis, and the inoculated plants were asymptomatic. We also showed that C4 expression in plant could help C4 deficient BSCTV mutants to move systemically. C4 was localized in the cytosol and the nucleus in both Arabidopsis protoplasts and N. benthamiana leaves and the protein appeared to bind viral DNA and ds/ssDNA nonspecifically, displaying novel DNA binding properties. Conclusions: Our results suggest that C4 protein in BSCTV is involved in symptom production and may facilitate virus movement instead of virus replication

    Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays

    Get PDF
    This paper proposes a novel pixel circuit design and driving method for active-matrix organic light-emitting diode (AM-OLED) displays that use low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) as driving element. The automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE) simulator was used to verify that the proposed pixel circuit, which comprises five transistors and one capacitor, can supply uniform output current. The voltage programming method of the proposed pixel circuit comprises three periods: reset, compensation with data input, and emission periods. The simulated results reflected excellent performance. For instance, when Δ TH = ±0.33 V, the average error rate of the OLED current variation was low (< 0.8%), and when Δ TH OLED = +0.33 V, the error rate of the OLED current variation was 4.7%. Moreover, when the × (current × resistance) drop voltage of a power line was 0.3 V, the error rate of the OLED current variation was 5.8%. The simulated results indicated that the proposed pixel circuit exhibits high immunity to the threshold voltage deviation of both the driving poly-Si TFTs and OLEDs, and simultaneously compensates for the × drop voltage of a power line

    Fine-Grained Video Retrieval With Scene Sketches

    Get PDF
    Benefiting from the intuitiveness and naturalness of sketch interaction, sketch-based video retrieval (SBVR) has received considerable attention in the video retrieval research area. However, most existing SBVR research still lacks the capability of accurate video retrieval with fine-grained scene content. To address this problem, in this paper we investigate a new task, which focuses on retrieving the target video by utilizing a fine-grained storyboard sketch depicting the scene layout and major foreground instances’ visual characteristics (e.g., appearance, size, pose, etc.) of video; we call such a task “fine-grained scene-level SBVR”. The most challenging issue in this task is how to perform scene-level cross-modal alignment between sketch and video. Our solution consists of two parts. First, we construct a scene-level sketch-video dataset called SketchVideo, in which sketch-video pairs are provided and each pair contains a clip-level storyboard sketch and several keyframe sketches (corresponding to video frames). Second, we propose a novel deep learning architecture called Sketch Query Graph Convolutional Network (SQ-GCN). In SQ-GCN, we first adaptively sample the video frames to improve video encoding efficiency, and then construct appearance and category graphs to jointly model visual and semantic alignment between sketch and video. Experiments show that our fine-grained scene-level SBVR framework with SQ-GCN architecture outperforms the state-of-the-art fine-grained retrieval methods. The SketchVideo dataset and SQ-GCN code are available in the project webpage https://iscas-mmsketch.github.io/FG-SL-SBVR/

    Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel

    Get PDF
    Abstract: Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement

    Observation of the Zero Doppler Effect

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.National Basic Research Program (973) of China (No. 2011CB922001), and National Natural Science Foundation of China (No. 11234010)

    The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43

    Get PDF
    We present observations of polarized dust emission at 850 μm from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense (NH 10 22 2 ~ –1023 cm−2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ∼160 ± 30 μG in the main starless core and up to ∼90 ± 40 μG in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-Alfvénic. We also present a new method of data reduction for these denser but fainter objects like starless cores
    corecore