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Fine-Grained Video Retrieval with Scene Sketches
Ran Zuo, Xiaoming Deng, Keqi Chen, Zhengming Zhang, Yu-Kun Lai, Fang Liu,

Cuixia Ma, Hao Wang, Yong-Jin Liu, Hongan Wang

Abstract—Benefiting from the intuitiveness and naturalness
of sketch interaction, sketch-based video retrieval (SBVR) has
received considerable attention in the video retrieval research
area. However, most existing SBVR research still lacks the
capability of accurate video retrieval with fine-grained scene
content. To address this problem, in this paper we investigate
a new task, which focuses on retrieving the target video by
utilizing a fine-grained storyboard sketch depicting the scene
layout and major foreground instances’ visual characteristics
(e.g., appearance, size, pose, etc.) of video; we call such a
task “fine-grained scene-level SBVR”. The most challenging
issue in this task is how to perform scene-level cross-modal
alignment between sketch and video. Our solution consists of
two parts. First, we construct a scene-level sketch-video dataset
called SketchVideo, in which sketch-video pairs are provided and
each pair contains a clip-level storyboard sketch and several
keyframe sketches (corresponding to video frames). Second, we
propose a novel deep learning architecture called Sketch Query
Graph Convolutional Network (SQ-GCN). In SQ-GCN, we first
adaptively sample the video frames to improve video encoding
efficiency, and then construct appearance and category graphs
to jointly model visual and semantic alignment between sketch
and video. Experiments show that our fine-grained scene-level
SBVR framework with SQ-GCN architecture outperforms the
state-of-the-art fine-grained retrieval methods. The SketchVideo
dataset and SQ-GCN code are available in the project webpage
https://iscas-mmsketch.github.io/FG-SL-SBVR/.

Index Terms—Fine-grained sketch-based video retrieval,
sketch-video dataset, scene sketch, graph convolutional networks.

I. INTRODUCTION

THE rapid growth of video resources has led to the

demand for accurate video retrieval. When people recall

events happened in videos, their episodic memory is evoked

to describe the event including spatial and temporal contexts

as well as other event details [1]. Compared to text queries

(which are limited to the intrinsic abstractness of the text

modality) and image and video queries (which suffer from

the difficulties in data acquisition to timely express users’

diverse retrieval intention), free-hand sketch is a kind of
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Fig. 1. The application scenario of fine-grained scene-level sketch-based
video retrieval (SBVR), where different types of sketch queries are compared:
(a) coarse-grained sketch without appearance details, infeasible for accurate
retrieval; (b) fine-grained sketch(es) without background elements, limited to
single instance; (c) fine-grained scene-level sketch, providing sufficient visual
descriptions for accurate video match. The sketch formats of (a) and (b) refer
to [3] and [8].

flexible visual recollections which can intuitively provide fine-

grained information of objects or scenes by depicting their

approximate appearance and layout. Another advantage of

free-hand sketch is that it can be easily obtained with the aid

of popular sketching interfaces on various touch devices [2].

Therefore, sketch-based video retrieval (SBVR) has become a

highly desired tool.

Most existing SBVR research mainly concentrates on

coarse-grained retrieval [3], [4], [5], [6], [7], which does not

make use of subtle differences in individual objects. The

only instance-level SBVR work is confined to single-instance

retrieval [8], which still overlooked the presence of multiple

objects and scene context of background information in the

real-world videos (see Figure 1b). Our work is motivated

by the key observation that if users are capable of pro-

viding sketches with fine-grained scene content, much more

accurate video retrieval can be achieved. Figure 1 shows an

application scenario of fine-grained scene-level SBVR, where

the user tries to search for a sports video clip specifically

with intense physical touch. Rather than using abstract and

complex text description, the user can sketch the desired scene

content using a Tablet PC. We observe that sketching without

multiple object instances or background details still leads to

inaccurate retrieval. As a comparison, fine-grained sketches

which emphasize the poses of players and the background

such as several trees and grasses can significantly improve the

accuracy of retrieval.

To the best of our knowledge, we are the first to study

the fine-grained scene-level SBVR problem, which aims to

retrieve the target video using a fine-grained scene sketch as

input. Instead of providing a sequence of sketches similar to

[8] (see Figure 1b), we use a single storyboard sketch (see

Figure 1c) as query. Storyboard sketch was first proposed

in [3], where both scene content and dynamic information are
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depicted using arrows and streak lines (see Figure 1a). In our

work, the definition of storyboard sketch is slightly different:

(1) the foreground instances and background elements are

depicted with more fine-grained details (i.e. appearance, size,

pose, etc.) to support fine-grained scene-level SBVR; (2) our

sketch can contain instances that appear in different video

frames (see Figure 2 for some examples); (3) the motion cues

indicating instantaneous movement are removed due to the

semantic ambiguity caused by the incapability of represent-

ing complex activities and the misalignment between motion

cues and instances based on our user study (presented in

Section III-A). The fine-grained scene-level SBVR problem is

challenging mainly in three aspects: (1) the intrinsic domain

gap between real-world videos and sketches that only contain

sparse strokes; (2) the inaccurate correspondence of instances

between videos and sketches due to freehand sketching; and

(3) lack of fine-grained scene-level SBVR datasets.

To address the dataset issue, we construct a fine-grained

scene-level SBVR dataset called SketchVideo, which contains

6,713 sketches and 1,126 video clips. The distinct characteris-

tics of our dataset include: (1) sketch-video pairs are provided,

and each pair contains one clip-level storyboard sketch (which

can contain instances in different video frames) and several

keyframe sketches (each of which contains instances in one

video frame); (2) each video contains one consistent scene; (3)

43 foreground and 18 background object categories are labeled

in the dataset; (4) each sketch in the dataset (including both

storyboard sketches and keyframe sketches) depicts multiple

foreground instances and iconic background elements.

Based on our SketchVideo dataset, we propose a novel

Sketch Query Graph Convolutional Network (SQ-GCN) to

model the spatial-temporal content matching of videos and

storyboard sketches. We firstly design an adaptive video frame

sampling strategy called FrameSampler, using the visual fea-

ture matching between keyframe sketches and video frames to

train a sketch-image correlation model. During video retrieval,

we use this model to select video frames that are highly

relevant to the input storyboard sketch for video feature

encoding. FrameSampler is useful for efficient video encoding

because the selected frames can cover major object instances in

the sketch, which is beneficial for content alignment between

video and sketch. Then we construct a spatial storyboard

sketch graph and a spatial-temporal video graph, and de-

sign two feature encoding branches, in which appearance

and category features are aligned respectively through graph

convolutions. After feature encoding in each branch, the sketch

and video embeddings are fed to a triplet network training

process. During the inference stage, we utilize appearance and

category graph features with a late fusion strategy to compute

the overall distance between sketch and video features for

video retrieval.

As a summary, in this paper, we make the following

contributions:

1) We construct a scene-level multi-instance sketch-video

dataset SketchVideo. The sketches in SketchVideo de-

pict not only fine-grained instances, but also multiple

objects in diverse scenes. The dataset contains fine-

grained clip-level (storyboard sketch) and frame-level

(keyframe sketches) sketch-video pairs. In addition to

video retrieval, our dataset can also support other related

scene-level video tasks, such as video synthesis, video

summarization, etc.

2) We propose a novel fine-grained scene-level video re-

trieval solution, using clip-level storyboard sketches as

query input and designing a SQ-GCN structure to model

the semantic and visual correlation between two modal-

ities of videos and sketches.

3) We propose an adaptive video sampling strategy based

on frame-level sketch-video pairs to reduce the computa-

tional cost and improve the efficiency of video encoding.

4) Extensive experimental results on the SketchVideo

dataset demonstrate that our method outperforms the

state-of-the-art fine-grained retrieval methods and the

dataset is useful to promote sketch-based video research.

II. RELATED WORK

A. Sketch-based Video Datasets

Most existing sketch datasets are designed for sketch un-

derstanding and sketch-based image applications [9], [10],

[11], [12]. TU-Berlin [9] and Sketchy [10] are two large-

scale sketch datasets with category-level sketch annotations.

Yu et al. [11] constructed the first instance-level sketch-

image dataset where each image has one corresponding sketch.

While previous datasets only contain sketches of single object

without background information, Zou et al. [12] proposed the

first scene-level sketch dataset SketchyScene, consisting of

scene sketch and image pairs with both instance-level and

scene-level annotations.

For sketch-based video retrieval, Collomosse et al. [3]

built several sketch-video datasets and used a combination of

sketches and motion cues (arrows and streak-lines) to retrieve

videos. Sketches used in [4], [5], [6], [7] are similar to [3] with

different video types and scales. These sketches are roughly-

drawn stick figures without fine-grained details, which can

only be used for coarse-grained video retrieval.

Recently, Xu et al. [8] established a fine-grained sketch-

video pair dataset named FG-SBVR, which contains 528

skating video clips and 1,448 sketches depicting the appear-

ance and motion of the skaters. However, each skating video

only contains one skater and a motion vector without scene

context. FG-SBVR lacks instance amount, category diversity,

and background elements, so there still lacks suitable datasets

for scene-level SBVR research.

B. Cross-modal Video Retrieval

Video retrieval is a challenging problem due to the complex

spatial and temporal information in video content. A few

works use a set of example videos as query inputs [13], [14],

[15], which is impractical for in-time query acquisition due to

the variability of users’ retrieval intention. Therefore, cross-

modal video retrieval has drawn researchers’ attention, with

query forms including image, text and sketch. Image-based

video retrieval [16], [17], [18], [19] still suffers from the

same difficulty as example videos. Although text [20], [21],

[22], [23] is capable of expressing rich semantic information,
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Fig. 2. Examples of our SketchVideo dataset where the sketches and video frames are temporally colored to show the dynamics of the individuals over time.
Besides the fine-grained diversity in objects’ size, viewpoint and appearance, the dataset also has fine-grained scene variations: (a) background variation, where
the two videos contain the same policemen and fugitive outside and inside a house respectively; (b) foreground object variation, where there are different
individuals on the beach in two videos.

it is too abstract to convey fine-grained details (i.e. layouts,

appearance, size, etc.) in videos.

A few sketch-based video retrieval (SBVR) studies were

conducted in the past decades. VideoQ [24] firstly took motion

depiction in query sketches into consideration and designed

strict rules for precise motion cue depiction. Collomosse

et al. [3] accepted greater flexibility of drawing sketches,

and proposed to use storyboard sketch as query, which is

composed of roughly depicted objects with motion cues. Hu et

al. [4] transformed keypoint trajectories corresponding to the

camera motion in videos by space-time keypoint clustering,

and matched the video and sketch tokens based on motion and

color using the Viterbi shortest path algorithm. Hu et al. [5]

later extended their work by leveraging the motion, color and

semantic distribution of videos for retrieval. Furthermore, Hu

et al. [6] used the Markov Random Field for video segmenta-

tion, and they built video graphs with space-time sub-volumes

to match the sketch by appearance, motion and semantic

category of the objects. James et al. [7] proposed an indexing

method to fuse the object shape, color, semantic category and

motion information into a spatial-temporal descriptor. All these

methods belong to coarse-grained SBVR, which ignores the

detailed depiction capability of sketches and lacks effective

mechanisms to retrieve a particular video with sketch.

Our work is related to [8], a prior art on the fine-grained

instance-level SBVR task. In [8], a sketch sequence query is

used to retrieve the target instance video. However, since the

method only uses sketches with a single foreground instance

without scene context, their method can not be generalized

well to many scenarios. It remains an open problem to per-

form fine-grained scene-level SBVR with multiple foreground

instances so far.

C. Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [25] are beneficial

for feature extraction of graph-structured data by message

passing through edge connection, and it has been widely

used in sketch-based image retrieval (SBIR) tasks [26], [27].

Specifically, Liu et al. [27] used GCNs for fine-grained scene-

level SBIR, where they constructed scene graphs with fore-

ground instances as nodes and normalized Euclidean distances

between nodes as edges. To extract the effective spatial and

temporal features in videos, Yan et al. [28] proposed Spatial-

Temporal Graph Convolutional Networks (ST-GCN) for action

recognition via constructing spatial-temporal graph of a skele-

ton sequence.

Inspired by these works, we propose a SQ-GCN model for

the fine-grained scene-level SBVR task, where we conduct

feature embedding of storyboard sketches and videos by

constructing spatial graphs for storyboard sketches and spatial-

temporal graphs for videos.

III. THE SKETCHVIDEO DATASET

We construct a new sketch-video dataset SketchVideo which

is proposed for fine-grained scene-level sketch-video re-

search (illustrated in Figure 2). SketchVideo contains 1,126

video clips collected from YouTube, and 6,713 corresponding

sketches forming clip-level and frame-level representations,

drawn by 30 amateur painters with diverse personal painting

skills and styles. All strokes in the sketches are annotated with

instance-level labels. The sketches were stored in the Scalable

Vector Graphic (SVG) format following [8], [9], [10].

A. User Study for Storyboard Sketch Depiction

To investigate whether motion cues [3], [8] are suitable

for storyboard scene sketch depiction, we carried out a user

study and recruited 24 participants (12 males and 12 females)

who rarely draw pictures and have no professional drawing

skills. Given randomly-selected videos in the SketchVideo

dataset, the participants were asked to draw scene sketches

with and without motion cues. Then they were invited to rate
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two storyboard sketch formats in three aspects, including “It

is easy to depict”, “It is capable of describing fine-grained

scene content” and “It has great generality ” (It can be applied

on common video retrieval scenarios) [29]. In order to find

out motion cues’ influences upon scene understanding, the

participants were split into six groups, where each group mem-

ber would describe their understanding of others’ depicted

sketches without and with motion cues respectively. In the end,

they rated whether they could well understand the meanings

of motion cues depicted in the sketches.

As illustrated in Figure 3a, storyboard sketches with motion

cues can convey slightly more scene content details, but

they are more difficult to depict and can lead to a decrease

of the sketch’s generality. Moreover, the average rating in

Figure 3b is below 3-Neutral which indicates that it is difficult

to understand the meanings of the motion cues that others de-

picted. After analyzing participants’ comprehension records of

storyboard sketches, the percentage of incorrect alignment of

motion cues and foreground objects is 48.57%. As illustrated

in Figure 4, users’ understanding of the main activities in the

scene sketch with or without motion cues is similar. However,

adding motion cues may cause semantic ambiguity due to (1)

the incapability of describing complex activities and (2) the

misalignment between multiple foreground objects and motion

cues. Several participants commented that “it is unlikely to use

motion cues to describe activities with complex trajectories”,

“it’s difficult to assign motion cues to multiple foreground

objects especially when the scene is very complex”, “maybe

there needs to be a strict standard of motion cue depiction

for comprehension, but that will harm the flexibility of sketch

creation”.

Fig. 3. Boxplots of user study results towards the usage of motion cues
in sketch depiction. (a) User evaluation of storyboard sketches with and
without motion cues; (b) User comprehension about motion cues depicted
in the sketch. We use a 5-point Likert scale for rating (1-Strongly Disagree
to 5-Strongly Agree).

Based on the user feedback, we can draw the follow-

ing conclusions. Although motion cues are useful to depict

objects’ directional and instantaneous movement, there are

non-negligible problems in practical usage including (1) the

increase of depicting difficulty, (2) the incapability to describe

complex activities, and (3) the misalignment of motion cues

and multiple foreground objects. In contrast, the basic un-

derstanding towards storyboard sketches without motion cues

has provided strong clues (scene layout, object appearance

and pose, main activity, etc.) for scene-level video retrieval.

Therefore, the storyboard sketches in our dataset are depicted

without motion cues.

Fig. 4. The comparison of the understandings between storyboard sketches
without and with motion cues. Users first describe the sketch without motion
cues, and then share their new understandings when motion cues are added.
The activities are stressed in red. They can easily understand the main
activities with or without motion cues, but adding motion cues leads to
ambiguous understanding, such as failing to represent complex activities, and
misalignment between motion cues and multiple foreground objects.

B. Video Collection and Processing

To construct our scene-level dataset with diverse foreground

and background content, we select several common scenes

as the background including home, wild, park, beach, sky,

road, etc., and then 11 common animal categories including

person, rabbit, sheep, cow, etc. were selected from [10], [33]

as the foreground objects. Then we used the combinations of

the foreground and background keywords to search videos on

YouTube, and downloaded the relevant video clips as the basis

of our dataset. We used the SceneDetect tool [34] to segment

them into clips, as to maintain the scene consistency of each

video. Then we manually screened out substandard video clips

when the SceneDetect tool fails due to dramatic shot changes.

Finally, we obtained 1,126 video clips with an average duration

of 13.3 seconds.

C. Sketch Collection

We developed a user interface for sketching and verification.

The painters were required to watch the video clip first

and drew one storyboard sketch by recalling the memorable

content of the clip, including major foreground objects and

background elements of the scene. Then they drew keyframe

sketches corresponding to specific video frames indicating

the detailed content variation process. The specific sketching

principles are: (1) each object resembles its video counterpart;
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Fig. 5. (a) Category distribution in the SketchVideo dataset. (b) Category distribution of other foreground objects.

TABLE I
COMPARISON WITH EXISTING SKETCH DATASETS. SKETCH AMOUNT AND MEAN STROKES OF SEVERAL DATASETS ARE CITED FROM [8].

Dataset
Objects

Sketch Amount
Paired Element

Instance-level Match? Mean Strokes
Fine-grained? Multi-instance? Categories Type Amount

TU-Berlin[9] - - 250 20000 - - - 17.55
Sketchy[10] X - 125 75471 Images 12500 - 16.06

QMUL-Shoe[11] X - 1 419 Images 419 X -
QMUL-Chair[11] X - 1 297 Images 297 X -

QMUL-Handbag[30] X - 1 568 Images 568 X -
SketchyScene[12] X X 44 29056 Images 4730 X -
SketchyCOCO[31] X X 17 14081 Images 14081 X -

FS-COCO[32] X X 150 10000 Images 10000 X 74.3
TSF[3] - X 3 100 Videos 298 - -

FG-SBVR[8] X - 1 1448 Videos 528 X 102.4

Our Dataset (SketchVideo) X X 61 6713 Videos 1126 X 1922.58

(2) typical background elements are depicted to represent the

current scene; (3) storyboard sketches depict major objects of

certain activities at different timings; (4) keyframe sketches

depict slight changes of each object. Auditors can monitor the

sketching process of painters and provide timely feedback on

the verification interface.

D. Ground Truth Annotation

In order to get the category pool for annotation, we se-

lected the main categories from [33] and typical background

categories of scenes (home, wild, park, beach, sky, road,

etc.), resulting in 61 categories for annotation. We design a

user interface for data annotation and annotation check. Each

foreground object is required to annotate. For background

categories with high redundancy (clouds, grasses, stones and

trees), we merge adjacent multiple objects of the same cate-

gory into a single object.

We provide three types of annotations for sketches and

videos: (1) instance-level sketch annotation of category,

strokes, orientation, integrity (describing the degree of occlu-

sion), similarity between the sketch and the video and quality

(i.e., how easy it can be recognized); (2) bounding boxes of

each foreground object in keyframe sketches and video frames;

(3) temporal alignment between sketches and video clips in

original untrimmed videos.

E. Dataset Analysis

The SketchVideo dataset contains abundant sketch-video

pairs with multiple categories. Each video corresponds to one

storyboard sketch and 4.96 keyframe sketches on average.

Each sketch is composed of 2.55 foreground objects and 2.68

background objects on average.

a) Category Analysis: In our dataset, there are 35,132

objects in total which consist of 48.82% foreground objects

and 51.18% background objects, respectively, and the detailed

category distribution is shown in Figure 5a. The foreground

objects contain a few commonly used foreground such as

person and ten animal categories, which are used to construct

queries, and other foreground such as bowl, car, motorcycle,

etc. (shown in Figure 5b).

b) Diversity: In order to make our dataset suitable for

real-world applications, our dataset contains objects in diverse

categories, appearances and scales, and varied scenes with

diversity. The scene variation can be summarized in two

aspects (see Figure 2): (1) the background variation and the

foreground object variation, which demonstrates the capability

of our dataset for fine-grained scene-level sketch studies; (2)

the sketches are drawn by painters with different levels of

painting skills (see Figure 6).

c) Dataset Augmentation: Inspired by the data augmen-

tation strategy in [12], we also allow the users to create

new scene sketches by arbitrarily combining different objects.

Furthermore, we provide stroke-level manipulation, which can
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Fig. 6. Examples of different painting levels in SketchVideo dataset. The good-painting level sketches contain vivid depiction of foreground objects (e.g.
detailed depiction of appearance, size and pose, etc.) and background elements. The normal-painting level ones lack some details of foreground and background.
And the poor-painting level sketches are roughly drawn and only depict the outline of objects.

further enable fine-tuning of each sketch object’s appearance.

d) Quality Evaluation of Our Dataset: The integrity,

similarity and quality of objects in medium and high levels

(out of low, medium and high for annotation) occupy 91.43%,

90.75%, 90.69% of cases respectively. It demonstrates that the

overall quality of our dataset is sufficient to support further

fine-grained sketch-based video research.

e) Comparison with Existing Sketch Datasets: We made

several statistical analysis on SketchVideo and the existing

sketch datasets (see Table I). Although TU-Berlin [9] and

Sketchy [10] have a large amount of sketches and object

categories, they cannot enable fine-grained instance-level re-

trieval due to the lack of instance-level matches. Most of

the remaining datasets in Table I support the fine-grained

cross-modal retrieval task, among which SketchyScene [12],

SketchyCOCO [31] and FS-COCO [32] are capable of fine-

grained scene-level retrieval with multiple instances, yet they

are all limited to the image domain. Compared with the video

retrieval datasets TSF [3] and FG-SBVR [8], our dataset covers

more object categories and contains more sketches, and the

sketches in our dataset depict not only fine-grained single

instances but also multiple objects in diverse scenes, which

is more suitable for real-world sketch-related video research.

IV. METHOD

A. Overview

In this work, we propose a SQ-GCN model for fine-grained

scene-level SBVR task by matching the spatial-temporal con-

tent between storyboard sketch and video (see Figure 7). The

SQ-GCN model includes three components, i.e., storyboard

sketch encoding, video encoding and feature matching. To

efficiently sample video frames aligned with storyboard sketch

content for video encoding, we train a sketch-image correlation

model with frame-level sketch-video pairs to select the most

relevant video frames given a storyboard sketch query. In order

to encode features of the storyboard sketch and video, we

design two encoding branches to perform the appearance and
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Fig. 7. The pipeline of our SQ-GCN for fine-grained scene-level SBVR with storyboard sketches. Our network includes three components, i.e. storyboard
sketch encoding, video encoding and feature matching. We firstly use an adaptive video frame sampling strategy to select relevant video samples. Then we
construct appearance graphs (appearance and position features) and category graphs (category and position features without scene node) for both sketch and
video. Through GCN for sketch encoding and ST-GCN for video encoding, we embed sketch and video into a common feature space, and use a triplet network
for training.

category alignment. In each branch, we construct a spatial

graph of sketch input and a spatial-temporal graph for the

sampled video frames, where each node represents a single ob-

ject instance. The node features are initialized with appearance

or category features in each branch, with the corresponding

position features further added to indicate the scene layout

information. Then the sketch and video embeddings are fed to

a triplet network for feature matching.

During the training stage, we train the appearance branch

and category branch, respectively. During the inference stage,

we use a late fusion strategy where the sketch-video distances

of both branches are computed together to comprehensively

obtain the retrieval results.

B. Storyboard Sketch Encoding

a) Graph Construction: Given a storyboard sketch S, we

construct a category graph Gs,c and an appearance graph Gs,a.

Both graphs contain n instance nodes g
(i)
s (i = 1, 2, ..., n)

representing instance-level information. Based on the nodes’

positional relationship, we define the edge weight Ai,j ∈

(0, 1) using normalized Distance-IoU [35] computed with their

bounding boxes. Besides, the appearance graph Gs,a has an

additional scene node g
(0)
s representing the global appearance.

The scene node and instance nodes are updated through

graph convolutions simultaneously. During feature updating,

the scene node is separated from the instance nodes and does

not conduct message passing with them.

b) Node Representation: The features of each node in

Gs,c and Gs,a are initialized with appearance features and

category features respectively, with positional embeddings

added. We use pre-trained GoogLeNet Inception-V3 [36] to

obtain 2048-d appearance features fa, and apply pre-trained

Bert model [37] to encode the category label into 768-d

features fc. Furthermore, to encode layout information, we

apply the method proposed in [38], [39] using sine and cosine

functions of different frequencies to obtain absolute position

features fp, and then add it to fa and fc respectively.

c) Graph Encoding: After constructing graphs and ini-

tializing the features, we adopt a two-layer GCN [25] for

feature embedding, the node features F l+1
s of graph Gs (the

feature updating process of Gs,c, Gs,a is similar) updated in

the l-th layer can be represented as follows:

F l+1
s = ReLU(AF l

sW
l) (1)

where A is the normalized adjacency matrix, and W l is the

trainable weights of the l-th layer.

After message passing through GCNs, we consider all the

instance nodes’ features F
(i)
s (i = 1, 2, ..., n) as different

channels, and then employ the Squeeze-and-Excitation (SE)

module [40] to obtain the encoded local features:

F I
s =

1

n

n∑

i=1

σ(W (1)
se ReLU(W (0)

se F̄ (i)
s ))F (i)

s (2)

where σ is the Sigmoid activation function, and Wse is the

weight matrix of the SE module.

Finally, for the category graph, we take instance nodes’

features F I
s,c as category features Fs,c. For the appearance

graph, we get its appearance features Fs,a by concatenating

F I
s,a with the scene node’s features F

(0)
s,a .

Fs,a = (F (0)
s,a ;F

I
s,a). (3)

C. Video Encoding

a) Adaptive Video Frame Sampling: The key issue of

video encoding is that multiple video frames may convey
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Fig. 8. Illustration of adaptive video sampling module. The module can
adaptively sample the most visually relevant frames given a storyboard sketch
as query.

the same information due to videos’ temporal redundancy.

To reduce huge computational cost in the commonly used

frame-by-frame processing and align the content of sketch

and video efficiently, we propose an adaptive video frame

sampling method named FrameSampler to sample the most

visually relevant frames to a storyboard sketch query (see

Figure 8). Benefiting from the paired data of sketch and image

in the keyframe of SketchVideo (see Figure 2), we train a

sketch-image correlation model using the same triplet loss

in Section IV-D for cross-modal semantic similarity analysis.

During video retrieval, we first sparsely sample several video

frames as the candidates, and then apply the correlation model

to further select the most relevant k frames for video encoding.

Benefiting from the lightweight design of our video sam-

pling network, the extra run-time cost caused by FrameSam-

pler is negligible (about 1% of the total retrieval run-time)

(see Section V-B).

b) Graph Construction: Given k sampled frames, we

construct spatial-temporal graphs to extract the spatial and

temporal features. For each frame, we construct spatial graphs

similar to that of the storyboard sketch, with appearance

features fa extracted by a ResNet-152 [41] network. The

number of spatial graphs is determined when we achieve

optimal experimental results on the training dataset. For the

appearance graph, after fusing the spatial instance features

through SE module into a single temporal instance node,

we build two temporal graphs GS
T and GI

T , which consist

of each frame’s scene node vst (t = 1, .., T ) and temporal

instance node vIt (t = 1, .., T ), respectively. The nodes are

connected in temporal order, representing global and local

temporal features. For the category graph, we only construct

one temporal graph with instance nodes since there are no

global features.

c) Video Graph Encoding: We use our Storyboard

Sketch Encoder to encode spatial video graphs, and apply

the two-layer GCN and SE module to temporal video graphs

successively. Then we obtain the video embeddings Fv,c and

Fv,a representing overall information in both category and

appearance levels.

D. Feature Matching

a) Loss Function: After obtaining storyboard sketch

features Fs and video features Fv , we adopt a fine-grained

cross-modal triplet loss to learn the semantic correlation of

sketch and video, where an input triplet contains the features

of the query sketch Fsi , the features of the corresponding video

Fvi
, and the features of the hard negative video Fvh

i
. The loss

function is denoted as:

L =
1

b

b∑

i=1

L
vi,v

h
i

si (4)

L
vi,v

h
i

si = max(0, d(Fsi , Fvi)− d(Fsi , Fvh
i
) +△) (5)

vhi = argmin
vj

d(Fsi , Fvj ), i 6= j (6)

where d(·, ·) is the Euclidean distance function, △ is the

margin between positive and negative pairs, and b is the batch

size.

b) Inference: During testing, we sort the candidate video

pools based on the Euclidean distance D between sketch

features Fs and video features Fv . Utilizing both category and

appearance information, we fuse the two distances Dc and Da

with appropriate weights:

D = αDc + (1− α)Da (7)

where α is determined during experiments empirically.

E. Implementation Details

For graph construction where each node represents a fore-

ground instance, we train two YOLOv4 models with annotated

bounding boxes of the training set (the weights of the two

models are not shared), and then use the models to detect the

objects in sketch and video for testing, respectively.

For the adaptive video frame sampling, we use the keyframe

sketches in the training set to train the sketch-image correlation

model, whose weights are fixed during video retrieval.

We use the PyTorch framework to implement our method

with a single RTX 2080Ti GPU. The GCNs’ parameters are

initialized with Kaiming Initialization. During training, we use

the Adam optimizer with initial learning rate 0.0001 and batch

size 100. The number of adaptively sampled video frames k is

set to 3. The margin △ in Eq. 5 is set to 100, and α in Eq. 7

is set to 0.65. The sketch and video embeddings are all 512-d

vectors in different methods. The number of instance nodes n

is a hyper-parameter which is fixed during graph construction

and can be modified to fine-tune SQ-GCN. If the number of

instances in the storyboard sketch and video frames is less

than n, the features of the rest nodes will be initialized with

zeros. Otherwise, we will calculate the size of each object

instance and select the top n as instance nodes. Specifically,

we set the number of graph nodes to 21, which includes 1

scene node (set to zero in the category model) and 20 instance

nodes (n=20) by traversing the maximum number of instances

contained in each storyboard sketch. We have conducted the

experiment with different graph nodes to evaluate the model’s

best performance with 21 graph nodes (See Effect of Graph

Nodes of Section V-B).
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Fig. 9. Top-3 results of our scene-level SBVR. Green rectangles represent the corresponding ground truth videos.

V. EXPERIMENTS

A. Datasets and Evaluation Metrics

a) Datasets: Since existing SBVR-related datasets in [3],

[8] are not publicly available, we split our SketchVideo dataset

into training set, validation set and test set, with 752, 187 and

187 video clips, respectively.

b) Evaluation Metrics: We evaluate the retrieval results

by two evaluation metrics. First, we use retrieval accuracy [11]

acc.@K, namely the percentage of sketch queries whose true-

match videos are ranked among the top K retrieved results.

In our case, we set K to 1, 5 and 10 respectively. Second, we

also apply mean Average Precision (mAP) scores to evaluate

the general ranking results.

TABLE II
ABLATION STUDY ON THE CONFIGURATION OF GRAPH CONSTRUCTION

AND FEATURE FUSION STRATEGY. ”T-GCN”: TEMPORAL GRAPH

CONVOLUTIONAL NETWORKS (IN VIDEO GRAPH ENCODING OF

SECTION IV-C), ”APP.”: APPEARANCE FEATURES, ”CAT.”: CATEGORY

FEATURES, ”POS.”: POSITION FEATURES.

Method mAP Acc.@1 Acc.@5 Acc.@10

Baseline (w/o adaptive sampling) 30.57 19.35 38.22 50.78
Baseline (w/o SE module) 34.60 22.01 48.29 64.31

Baseline 35.22 22.68 49.19 63.90

Graph Feature

App. (w/o scene) 18.80 8.01 27.56 41.38
App. (w/o SE Module) 37.15 23.29 54.28 66.88

App. (w/o T-GCN) 37.64 23.72 52.56 64.10
App. 39.92 25.64 55.98 70.94

App. & Pos. 48.75 33.17 67.63 80.13
Cat. (w/o SE Module) 37.94 18.16 63.89 81.84

Cat. (w/o T-GCN) 37.96 18.27 65.06 81.73
Cat. 40.17 21.15 63.78 82.53

Cat. & Pos. 51.78 38.25 68.81 80.34

Fusion type
Early 58.86 45.19 75.32 88.78

Collaborative 62.68 47.12 81.09 90.70
(Full feature) Late (SQ-GCN) 66.74 52.78 83.98 93.80

B. Ablation Study

a) Baseline: We set up a baseline model, where two

fully-connected layers are directly applied to the appearance

features of sketch and adaptively sampled video frames, and

then the frames’ features are fused with the SE module. Fi-

nally, the cross-modal triplet loss is utilized to train the model.

Row 1 in Table II shows the results of the baseline model,

which represents coarse-grained image-level matching. Note

that the adaptive sampling strategy can remarkably improve

the retrieval performance.

b) Graph Construction Analysis: To evaluate the effec-

tiveness of graph related configurations, we conduct several

experiments on different combinations of graph features and

specific graph modules.

The graph features can be initialized with appearance fea-

tures, category features and position features. When utilizing

appearance features, the results in Table II show that the graph

model without the scene node performs significantly worse

than the model with the scene node and our baseline model.

Therefore, the global scene content plays an important role in

appearance feature matching. Furthermore, the SE module also

improves the performance of both appearance and category

models, so it is important for instances’ node feature encoding.

In order to investigate whether the ST-GCN of our model can

capture temporal information effectively, we set the nodes in

temporal graphs to be completely separate from each other

(indicated as “w/o T-GCN” in Table II). The results show that

the temporal connections are useful for video encoding.

In order to address whether the appearance and category

models are complementary, we compare the performance of

appearance and category models (see App. and Cat. in Ta-

ble II). The mAP performance of the category model is slightly

better, demonstrating that the category correlation context is a

strong clue in multi-object video retrieval. As a comparison,

the appearance model performs better on ACC.@1 index,

which proves that the fine-grained appearance features that

sketch provides are necessary for accurate retrieval. Therefore,

we use both the appearance and category models for feature
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extraction.

As shown in Table II (App. vs. App. & Pos., Cat. vs. Cat.

& Pos.), position features indicating layout information are

effective to boost the performance of both the appearance and

the category models.

c) Fusion Methods: To find out the most effective way

to utilize both category and appearance information, several

experiments with different fusion methods are conducted. Ta-

ble II shows the comparison results. The early fusion strategy

is to simply add the two features. The collaborative method

fuses appearance and category features after they go through

the graph convolution, which performs better than the early

fusion method. The late fusion method computes the weighted

distance sum as in Eq. 7, where α = 0.65. We observe that

the late fusion method outperforms the other two methods by

a large margin.

d) Video Frame Sampling: To prove the effectiveness

of our adaptive sampling method, several experiments are

conducted in Table III. As k increases to 4, the corresponding

model already achieved excellent results for SketchVideo

dataset. Note that we tried all the possible combinations of

uniformly sampled video frames as fixed sampling points

and displayed the best performance in Table III. The results

demonstrate the superiority of our adaptive sampling method

compared to the fixed sampling method.

TABLE III
THE ABLATION STUDY ON SBVR WITH DIFFERENT SAMPLING

STRATEGIES AND DIFFERENT NUMBERS OF SAMPLED VIDEO FRAMES k.

Sampling Method mAP Acc.@1 Acc.@5 Acc.@10

Fixed Sampling

k=1 57.90 45.08 73.29 85.04
k=2 60.50 46.15 76.28 86.54
k=3 63.03 49.36 79.49 88.46
k=4 63.08 48.40 80.77 89.74

Adaptive Sampling

k=1 60.87 47.76 77.88 86.86
k=2 64.84 51.92 81.73 90.06
k=3 66.74 52.78 83.98 93.80
k=4 66.67 51.71 84.83 92.31

Fig. 10. The ablation study on SBVR with different numbers of graph nodes
during graph construction.

e) Effect of Graph Nodes: To evaluate the effectiveness

of graph nodes which includes 1 scene node (set to zero

in the category model) and n instance nodes, we conduct

several experiments with different numbers of graph nodes.

As demonstrated in Figure 10, the model’s performance is

almost the same after the number of graph nodes reaches 9.

C. Robustness of SQ-GCN

To evaluate the robustness of SQ-GCN for fine-grained

scene-level SBVR, we adopt two ways to randomly remove

strokes from storyboard sketches, including (1) randomly

removing 10%-50% strokes at any position or (2) randomly

removing 10%-50% continuous strokes of each instance in

storyboard sketches to generate the modified test-set and test

our model, Scene Sketcher [27] and FG-SBVR [8] on it.

Figure 11 shows the performance of the state-of-the-art meth-

ods. Our method consistently achieves the best performance,

which demonstrates the capabilities of our method for handling

incomplete scene sketches. Figure 12 shows several retrieval

examples with incomplete storyboard sketches.

Fig. 11. Performance results of different methods (including SQ-GCN,
Baseline, Scene Sketcher [27] and FG-SBVR [8]) with different levels of
sketch completeness to demonstrate their model robustness, where certain
proportions of (a) strokes at any position or (b) continuous strokes of each
instance are randomly removed.

D. Performance of SQ-GCN with Fine-tuned Inception-V3

To extract more effective sketch appearance features, we

adopt the sketch classification task and use the Sketchy

dataset [10] which contains a large amount of object-level

sketches with diverse categories to fine-tune the Inception-

V3 [36] pre-trained on ImageNet. As shown in Table IV,

we compare the performance of appearance model with pre-

trained Inception-V3 and fine-tuned Inception-V3 and the

results demonstrate that fine-tuned Inception-V3 can extract

more effective sketch appearance features and helps improve

the performance of SQ-GCN.

E. Comparison with State-of-the-Art Methods

We compare our method with two related state-of-the-art

methods [8][27]. Xu et al. [8] proposed the only deep learning-

based method so far. Scene Sketcher [27] is the state-of-the-

art method for fine-grained scene-level sketch-based image
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Fig. 12. Examples of Top-5 retrieval results given incomplete storyboard sketches of different levels (with 10%, 30% and 50% (a) strokes at any position or
(b) continuous strokes of each instance randomly removed respectively).

Fig. 13. Examples of Top-5 retrieval results given giraffe/elephant storyboard sketches with similar scene content.

TABLE IV
COMPARISON OF THE APPEARANCE MODEL WITH PRE-TRAINED

INCEPTION-V3 AND FINE-TUNED INCEPTION-V3.

Sketch Feature Extration Method mAP Acc.@1 Acc.@5 Acc.@10

Pretrained Inception-V3 48.75 33.17 67.63 80.13
Fine-tuned Inception-V3 53.07 38.25 69.23 80.34

retrieval. Both works support retrieval using one storyboard

sketch as query input. Therefore, we reproduce the FG-SBVR

method which did not release original codes, and use Scene

Sketcher to compare with our own baseline and final model.

For FG-SBVR, we randomly sample one video frame as [8]

did to extract the appearance feature. For Scene Sketcher,

we provide appearance, category, and position features and

average the features of sampled video frames. The results in

Table V show that SQ-GCN and SQ-GCN with fine-tuned

Inception-V3 greatly outperform the previous fine-grained

methods. Therefore, our method is effective in fine-grained

scene-level SBVR task. Figure 9 shows several retrieval ex-

amples with our method on the SketchVideo dataset.

F. Hard Case Analysis

To evaluate our method’s fine-grained scene-level retrieval

capability, we select 20 giraffe/elephant videos as hard cases

TABLE V
COMPARISON BETWEEN OUR MODEL AND THE STATE-OF-THE-ART

METHODS INCLUDING FG-SBVR [8] AND SCENE SKETCHER [27].

Method mAP Acc.@1 Acc.@5 Acc.@10

FG-SBVR[8] 23.25 14.02 32.23 42.99
Scene Sketcher[27] 24.14 17.76 31.78 37.78

Baseline 35.22 22.68 49.19 63.90
SQ-GCN 66.74 52.78 83.98 93.80

SQ-GCN w/ Fine-tuned Inception-V3 69.20 55.98 84.61 95.08

for detailed analysis. Their scene contents are similar while the

size, amount, movement, direction, etc. of foreground objects

and background elements have subtle differences. As shown

in Figure 13, our method can capture detailed scene content

information in storyboard sketches and retrieve the target video

accurately.

VI. APPLICATION

Sketch is a natural input modal that facilitates great creative

freedom, thus fine-grained scene-level SBVR has a wide range

of applications, such as finding videos in a cellphone album,

and collecting video materials for video creation.

In this work, we construct a prototype system that supports

interactive fine-grained scene-level SBVR on a PC or a tablet.

The user interface (Figure 14) provides two ways of sketch
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Fig. 14. The user interface of the fine-grained video retrieval system with
scene sketch, which supports two types of storyboard sketch depiction (in-
cluding sketch composition and sketch drawing) and retrieval results display.

creation, including sketch composition and sketch drawing.

For sketch composition, users change the category options

(Figure 14b) and select sketch materials existing in our dataset

from the sketch element gallery (Figure 14c). Then they can

compose refined scene sketches by resizing, dragging and

rotating sketch materials on the sketch canvas (Figure 14a). For

sketch drawing, users use pen and eraser (Figure 14d) to depict

the desired scene content. The retrieval results are displayed

(Figure 14e), and users can watch the retrieved videos by

clicking them.

We conducted a user study to evaluate the performance of

our design. 8 participants (4 males and 4 females) who rarely

draw pictures and have no professional drawing skills were

asked to retrieve a randomly-selected video based on sketch

drawing and sketch composition methods, respectively. They

were asked to draw the scene sketch twice, including coarse

drawing without any restrictions and detailed drawing with

careful descriptions of scene content. We evaluate our system

from three aspects, i.e. effectiveness (the system meets user’s

retrieval requirement), users’ satisfaction with the system

(users are relaxed and pleasant when using this system), and

efficiency of the system (the system spends little time to obtain

correct retrieval results), and we use a 5-point Likert scale

for rating (1-Strongly Disagree to 5-Strongly Agree). Our

system gets average ratings of 4.25, 4.63 and 4.13 for the three

evaluation aspects, so our fine-grained video retrieval system

with scene sketches has great potential for general users to

retrieve desired videos in a natural and effective way. Some

participants commented that “This retrieval method is quite

flexible because I can retrieve the exact scene content whatever

I imagined.”, “Sketch is a general tool for kids, e.g. retrieve

their desired cartoon videos through sketching.”

TABLE VI
THE TIMINGS OF SKETCH CREATION BY DRAWING AND COMPOSITION,

AND THE RANKING OF GROUND TRUTH (GT) VIDEOS IN THE USER STUDY.

Participant ID
Time Consumption GT Video Ranking

Coarse Drawing Detailed Drawing Composition Coarse Drawing Detailed Drawing Composition

1 59′′ 2′30′′ 1′14′′ 4 2 2
2 1′57′′ 4′55′′ 2′5′′ 4 1 1
3 1′14′′ 2′27′′ 1′16′′ 9 3 2
4 1′38′′ 3′36′′ 2′2′′ 3 1 1
5 1′45′′ 2′1′′ 1′42′′ 6 4 3
6 1′3′′ 3′32′′ 1′26′′ 15 2 4
7 2′12′′ 4′11′′ 2′ 2 1 2
8 1′48′′ 3′35′′ 2′2′′ 2 1 1

Moreover, we recorded the timings of sketch creation and

Fig. 15. Examples of user-created sketches by sketch drawing (including
coarse drawing and detailed drawing) and sketch composition in the user
study.

the rankings of the ground truth videos. Several examples of

user-created sketches are displayed in Figure 15. As shown

in Table VI and Figure 15, coarse sketch drawings describe

instances with sparse lines and vague contours while sketch

composition can generate high-quality scene sketches close to

the detailed sketch drawing. Besides, sketch composition costs

slightly more time than coarse sketch drawing but can retrieve

the target video much more accurately. Detailed drawing has

a good retrieval performance but takes nearly double the time

than sketch composition. Participants commented that “Sketch

composition is a great design. I always feel overwhelmed

when I’m drawing because I don’t have such skills. Sketch

composition not only helps me retrieve videos more accurately,

but also makes me feel more comfortable during retrieval.”,

“The searching of the right materials takes time, but I don’t

have to worry about my poor painting skills anymore, which

is fantastic.”. In summary, our system gets positive feedback

from participants, which shows that our system design is

effective and practical and our system has great potential for

the applications of fine-grained scene-level SBVR.

VII. CONCLUSION

In this paper, we present the first fine-grained scene-level

sketch-video-paired dataset named SketchVideo, with clip-

level storyboard sketch and frame-level keyframe sketches

depicted for each video. Benefiting from our proposed dataset

SketchVideo, we investigate the new scene-level SBVR task

with the storyboard sketch query, and propose a novel SQ-

GCN model to perform feature matching between sketches

and videos. In order to improve video encoding efficiency,

we design FrameSampler, an adaptive video sampling strategy

based on frame-level sketch-video pairs. Extensive experimen-

tal results demonstrate that our method achieves the-state-of-

the-art performance for fine-grained scene-level SBVR. These

results also evaluate the efficiency of our SketchVideo dataset,

which has great application potential in sketch-based video

research. For example, the keyframe sketches can be used for

video synthesis, and the storyboard sketches can be used for

scene-level video localization and summarization. Specifically,

sketch-based video summarization aims to automatically gen-

erate storyboard sketches from video clips, which provides
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an interactive representation to annotate and visualize the

major scene content of video clips [42] and supports flexibly

editing or adding object sketches in a sketch-based interface.

Furthermore, we will try CLIP [43] to simplify our SQ-GCN

model inspired by [44], [32] and adapt it to scene sketches’

feature encoding in the future.

REFERENCES

[1] E. Tulving, “Elements of episodic memory,” 1983.
[2] J. A. Landay and B. A. Myers, “Sketching interfaces: Toward more

human interface design,” Computer, vol. 34, no. 3, pp. 56–64, 2001.
[3] J. P. Collomosse, G. McNeill, and Y. Qian, “Storyboard sketches for

content based video retrieval,” in Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2009, pp. 245–252.
[4] R. Hu and J. Collomosse, “Motion-sketch based video retrieval using a

trellis levenshtein distance,” in Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2010, pp. 121–124.
[5] R. Hu, S. James, and J. Collomosse, “Annotated free-hand sketches

for video retrieval using object semantics and motion,” in International

Conference on Multimedia Modeling (MMM), 2012, pp. 473–484.
[6] R. Hu, S. James, T. Wang, and J. Collomosse, “Markov random fields for

sketch based video retrieval,” in Proceedings of the 3rd ACM conference

on International conference on multimedia retrieval (ICMR), 2013, pp.
279–286.

[7] S. James and J. Collomosse, “Interactive video asset retrieval using
sketched queries,” in Proceedings of the 11th European Conference on

Visual Media Production, 2014, pp. 1–8.
[8] P. Xu, K. Liu, T. Xiang, T. M. Hospedales, Z. Ma, J. Guo, and Y.-Z.

Song, “Fine-grained instance-level sketch-based video retrieval,” IEEE

Transactions on Circuits and Systems for Video Technology (TCSVT),
vol. 31, no. 5, pp. 1995–2007, 2020.

[9] M. Eitz, J. Hays, and M. Alexa, “How do humans sketch objects?” ACM

Transactions on graphics (TOG), vol. 31, no. 4, pp. 1–10, 2012.
[10] P. Sangkloy, N. Burnell, C. Ham, and J. Hays, “The sketchy database:

learning to retrieve badly drawn bunnies,” ACM Transactions on Graph-

ics (TOG), vol. 35, no. 4, pp. 1–12, 2016.
[11] Q. Yu, F. Liu, Y.-Z. Song, T. Xiang, T. M. Hospedales, and C.-C.

Loy, “Sketch me that shoe,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 799–807.
[12] C. Zou, Q. Yu, R. Du, H. Mo, Y.-Z. Song, T. Xiang, C. Gao, B. Chen,

and H. Zhang, “Sketchyscene: Richly-annotated scene sketches,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 421–436.

[13] Z. Chen, J. Lu, J. Feng, and J. Zhou, “Nonlinear structural hashing for
scalable video search,” IEEE Transactions on Circuits and Systems for

Video Technology (TCSVT), vol. 28, no. 6, pp. 1421–1433, 2017.
[14] J. Song, H. Zhang, X. Li, L. Gao, M. Wang, and R. Hong, “Self-

supervised video hashing with hierarchical binary auto-encoder,” IEEE

Transactions on Image Processing (TIP), vol. 27, no. 7, pp. 3210–3221,
2018.

[15] S. Li, Z. Chen, J. Lu, X. Li, and J. Zhou, “Neighborhood preserving
hashing for scalable video retrieval,” in Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 2019, pp. 8212–
8221.

[16] Y. Li, R. Wang, Z. Huang, S. Shan, and X. Chen, “Face video retrieval
with image query via hashing across euclidean space and riemannian
manifold,” in Proceedings of the IEEE conference on computer vision

and pattern recognition (CVPR), 2015, pp. 4758–4767.
[17] A. Araujo and B. Girod, “Large-scale video retrieval using image

queries,” IEEE transactions on circuits and systems for video technology

(TCSVT), vol. 28, no. 6, pp. 1406–1420, 2017.
[18] R. Xu, L. Niu, J. Zhang, and L. Zhang, “A proposal-based approach for

activity image-to-video retrieval.” in Proceedings of the AAAI Confer-

ence on Artificial Intelligence (AAAI), 2020, pp. 12 524–12 531.
[19] L. Liu, J. Li, L. Niu, R. Xu, and L. Zhang, “Activity image-to-video

retrieval by disentangling appearance and motion,” in Proceedings of the

AAAI Conference on Artificial Intelligence (AAAI), 2021, pp. 1–9.
[20] B. Zhang, H. Hu, and F. Sha, “Cross-modal and hierarchical modeling

of video and text,” in Proceedings of the European Conference on

Computer Vision (ECCV), 2018, pp. 374–390.
[21] M. Wray, D. Larlus, G. Csurka, and D. Damen, “Fine-grained action

retrieval through multiple parts-of-speech embeddings,” in Proceedings

of the IEEE International Conference on Computer Vision (ICCV), 2019,
pp. 450–459.

[22] Y. Song and M. Soleymani, “Polysemous visual-semantic embedding
for cross-modal retrieval,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2019, pp. 1979–
1988.

[23] S. Chen, Y. Zhao, Q. Jin, and Q. Wu, “Fine-grained video-text retrieval
with hierarchical graph reasoning,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2020, pp.
10 638–10 647.

[24] S.-F. Chang, W. Chen, H. J. Meng, H. Sundaram, and D. Zhong,
“Videoq: an automated content based video search system using visual
cues,” in Proceedings of the fifth ACM international conference on

Multimedia (MM), 1997, pp. 313–324.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-

resentations (ICLR), 2017.

[26] Z. Zhang, Y. Zhang, R. Feng, T. Zhang, and W. Fan, “Zero-shot sketch-
based image retrieval via graph convolution network,” in Proceedings of

the AAAI Conference on Artificial Intelligence (AAAI), vol. 34, no. 07,
2020, pp. 12 943–12 950.

[27] F. Liu, C. Zou, X. Deng, R. Zuo, Y.-K. Lai, C. Ma, Y.-J. Liu, and
H. Wang, “Scenesketcher: Fine-grained image retrieval with scene
sketches,” in Proceedings of the European Conference on Computer

Vision (ECCV), 2020, pp. 718–734.

[28] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proceedings of the

AAAI conference on artificial intelligence (AAAI), 2018.

[29] K. Hornbæk and A. Oulasvirta, “What is interaction?” in Proceedings

of the 2017 CHI Conference on Human Factors in Computing Systems

(CHI), 2017, pp. 5040–5052.

[30] J. Song, Q. Yu, Y.-Z. Song, T. Xiang, and T. M. Hospedales, “Deep
spatial-semantic attention for fine-grained sketch-based image retrieval,”
in Proceedings of the IEEE International Conference on Computer

Vision (ICCV), 2017, pp. 5551–5560.

[31] C. Gao, Q. Liu, Q. Xu, L. Wang, J. Liu, and C. Zou, “Sketchycoco:
Image generation from freehand scene sketches,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 5174–5183.

[32] P. N. Chowdhury, A. Sain, A. K. Bhunia, T. Xiang, Y. Gryaditskaya,
and Y.-Z. Song, “Fs-coco: towards understanding of freehand sketches
of common objects in context,” in European Conference on Computer

Vision. Springer, 2022, pp. 253–270.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Proceedings of the European conference on computer vision

(ECCV), 2014, pp. 740–755.

[34] https://pyscenedetect.readthedocs.io/en/latest/.

[35] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-iou loss:
Faster and better learning for bounding box regression,” in Proceedings

of the AAAI Conference on Artificial Intelligence (AAAI), vol. 34, no. 07,
2020, pp. 12 993–13 000.

[36] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the

IEEE conference on computer vision and pattern recognition (CVPR),
2016, pp. 2818–2826.

[37] H. Xiao, “bert-as-service,” https://github.com/hanxiao/bert-as-service,
2018.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances

in neural information processing systems (NIPS), 2017, pp. 5998–6008.

[39] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
Proceedings of the European conference on computer vision (ECCV),
2020, pp. 213–229.

[40] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR), 2018, pp. 7132–7141.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition (CVPR), 2016, pp. 770–778.

[42] C.-X. Ma, Y.-J. Liu, H.-A. Wang, D.-X. Teng, and G.-Z. Dai, “Sketch-
based annotation and visualization in video authoring,” IEEE Transac-

tions on Multimedia (TMM), vol. 14, no. 4, pp. 1153–1165, 2012.

[43] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International

Conference on Machine Learning. PMLR, 2021, pp. 8748–8763.



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 14

[44] P. Sangkloy, W. Jitkrittum, D. Yang, and J. Hays, “A sketch is worth
a thousand words: Image retrieval with text and sketch,” in European

Conference on Computer Vision. Springer, 2022, pp. 251–267.

Ran Zuo received the BS degree from Beijing
Normal University, China, in 2018. She is currently
pursuing her Ph.D. degree with Beijing Key Lab of
Human-Computer Interaction, Institute of Software,
Chinese Academy of Sciences, China. Her research
interests include sketch interaction and computer
vision.

Xiaoming Deng received the bachelor’s and mas-
ter’s degrees from Wuhan University, and the PhD
degree from the Institute of Automation, Chinese
Academy of Sciences (CAS). He is currently a pro-
fessor with the Institute of Software, CAS. He has
been a research fellow with the National University
of Singapore, and a postdoctoral fellow with the
Institute of Computing Technology, CAS, respec-
tively. His main research topics are in computer
vision, and specifically related to 3D reconstruction,
human motion tracking and synthesis, and natural

user interfaces.

Keqi Chen received the Bachelor’s degree from
Southeast University, China in 2019, and the
Master’s degree from the University of Chinese
Academy of Sciences (UCAS), China in 2022.
His research interests include computer vision and
human-computer interaction.

Zhengming Zhang received his B.S. degree from
the China University of Petroleum, Beijing in 2016.
He is currently pursuing his Ph.D. degree with
the University of Chinese Academy of Sciences,
Beijing, China. His current research interests include
human-computer interaction and computer vision.

Yu-Kun Lai received his Bachelor’s and Ph.D. de-
grees in computer science from Tsinghua University
in 2003 and 2008, respectively. He is currently a
Professor in the School of Computer Science & In-
formatics, Cardiff University. His research interests
include computer graphics, geometry processing,
image processing, and computer vision. He is on the
editorial board of The Visual Computer.

Fang Liu received her Ph.D. degree from the
University of the Chinese Academy of Sciences
(UCAS), Beijing, China, in 2021. She is currently
a postdoc at Tsinghua University. Her research in-
terests include computer vision, sketch interaction,
and affective computing.

Cuixia Ma received the B.S. and M.S. degrees
from Shandong University, China, in 1997 and 2000,
respectively, and the Ph.D. degree from the Institute
of Software, Chinese Academy of Sciences, Beijing,
China, in 2003. She is now a Professor with the
Institute of Software, Chinese Academy of Sciences.
Her research interests include Human-computer in-
teraction, Sketch interface, and Multi-modal fusion.

Hao Wang received his Ph.D. degree from the
University of Tokyo, co-supervised by professors
from the University of California, Berkeley. He is
currently leading the AI product development team
at Alibaba Cloud, Alibaba Group. Before that, he
was a Chief Data Scientist at Qihoo 360 Inc and a
professor at the Chinese Academy of Sciences. His
current research interests include Large Language
Models and conversational AI.

Yong-Jin Liu received the B.Eng. degree from
Tianjin University, Tianjin, China, in 1998, and
the M.Phil. and Ph.D. degrees from the Hong
Kong University of Science and Technology, Hong
Kong, China, in 2000 and 2004, respectively. He
is now a Professor with BNRist, Department of
Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China. His research interests include
computational geometry, computer vision, cognitive
computation, and pattern analysis. For more in-
formation, visit http://cg.cs.tsinghua.edu.cn/people/

∼Yongjin/Yongjin.htm

Hongan Wang received the Ph.D. degree from the
Institute of Software, Chinese Academy of Sciences,
Beijing, China, in 1999. He is a Professor with the
Institute of Software, Chinese Academy of Sciences.
He is currently the Director of Intelligence Engi-
neering Laboratory. His research interests include
human-computer interaction, real-time intelligence,
and real-time active database.


